摘要:
A method of forming a cutting element that includes filling at least one non-planar region on an upper surface of a carbide substrate with a diamond mixture, subjecting the substrate and the diamond mixture to high pressure high temperature sintering conditions to form a reduced-CTE substrate having polycrystalline diamond that extends a depth into the reduced-CTE substrate in an interface region, and an upper surface made of a composite surface of diamond and carbide, and attaching a polycrystalline diamond body to the composite surface of the reduced-CTE substrate is disclosed.
摘要:
A drill bit may include a bit body having a plurality of blades extending radially therefrom, the bit body comprising a first matrix region and a second matrix region, wherein the first matrix region is formed from a moldable matrix material having carbide particles with a unimodal particle size distribution; and at least one cutting element for engaging a formation disposed on at least one of the plurality of blades.
摘要:
A method of forming a cutting element that includes filling at least one non-planar region on an upper surface of a carbide substrate with a diamond mixture, subjecting the substrate and the diamond mixture to high pressure high temperature sintering conditions to form a reduced-CTE substrate having polycrystalline diamond that extends a depth into the reduced-CTE substrate in an interface region, and an upper surface made of a composite surface of diamond and carbide, and attaching a polycrystalline diamond body to the composite surface of the reduced-CTE substrate is disclosed.
摘要:
A method of manufacturing a drill bit having a bit body and a plurality of blades extending radially from the bit body is disclosed, wherein the method includes adhering a first matrix material to at least a portion of a mold cavity corresponding to an outer surface of the bit body, loading a second matrix material into the other portions of the mold cavity, and heating the mold contents to form a matrix body drill bit.
摘要:
A drill bit may include a bit body having a plurality of blades extending radially therefrom, the bit body comprising a first matrix region and a second matrix region, wherein the first matrix region is formed from a moldable matrix material having carbide particles with a unimodal particle size distribution; and at least one cutting element for engaging a formation disposed on at least one of the plurality of blades.
摘要:
A method of manufacturing a drill bit having a bit body and a plurality of blades extending radially from the bit body is disclosed, wherein the method includes adhering a first matrix material to at least a portion of a mold cavity corresponding to an outer surface of the bit body, loading a second matrix material into the other portions of the mold cavity, and heating the mold contents to form a matrix body drill bit.
摘要:
Cutter assemblies comprising an outer support element and a cutting element disposed therein. The cutting element is immovably attached to the outer support element. Also provided are downhole tools incorporating such cutter assemblies and methods of making such downhole tools.
摘要:
A drill bit that includes a bit body having a plurality of blades extending radially therefrom, the bit body comprising a first matrix region and a second matrix region, wherein the first matrix region is formed from a moldable matrix material; and at least one cutting element for engaging a formation disposed on at least one of the plurality of blades is disclosed.
摘要:
A drill bit that includes a bit body having a plurality of blades extending radially therefrom, the bit body comprising a first matrix region and a second matrix region, wherein the first matrix region is formed from a moldable matrix material; and at least one cutting element for engaging a formation disposed on at least one of the plurality of blades is disclosed.
摘要:
A drill bit that includes a bit body having a plurality of blades extending radially therefrom, at least a portion of the plurality of blades comprises a first matrix region comprising a plurality of first carbide particles separated by a first binder phase, each of the first carbide particles comprising a mixture of WC and W2C, and wherein the first matrix region has less than about 5 percent by volume, based on the total volume of the first matrix region, of complex metal carbides dispersed in the first binder phase; and at least one cutting element for engaging a formation disposed on at least one of the plurality of blades.