摘要:
A twisted nematic type of liquid crystal device comprises two cell walls enclosing a layer of a nematic or long pitch cholesteric liquid crystal material. The device has both an alignment direction and a surface tilt provided by an asymmetric grooves structure alignment on one or both walls. The alignment treatment may be provided by a shaped layer of a photolithographic material. Embossing, ruling, or transferred from a carrier layer material may alternatively provide the alignment. The amount of twist may be multiples of about 90.degree. and the device arranged between two polarisers.
摘要:
A ferroelectric liquid crystal device comprises a layer of a ferroelectric liquid crystal material contained between two cell walls carrying electrode structures and a surface alignment treatment. The surface alignment is provided by a profiled surface, e.g., a grating, on at least one cell wall. The grating may be a monograting or a bigrating, with a symmetric or asymmetric profile. Such a profiling enables surface tilt and alignment anchoring energy to be independently arranged to suit liquid crystal material and device type to give a required molecular arrangement and low device defect. The grating may be provided by interferography, photolithography, embossing, ruling, or carrier layer transfer. Alignment directions on the cell walls may be parallel or non-parallel. The surface tilt on both cell walls may be the same or different values. The cell walls may be relatively rigid, e.g., glass slides, or flexible, e.g., thin plastic which may have its inner face embossed to provide one or both a grating and a set of spacer pillars.
摘要:
The invention provides a liquid crystal device having an aligned and surface tilted liquid crystal layer contained between two cell walls. The cell walls carry electrodes for applying voltages across the layer thickness to provide a display. The alignment is provided by a layer of a material that undergoes optically induced ordering during cross linking. That is, a material capable of aligning liquid crystal molecules after cross linking with polarized light. One such material is polyvinylcinnamate. The aligning layer is profiled with an asymmetric grating, eg approximately sawtooth in cross section by interferometer, oblique incidence photolithography, or embossing. The shape of the grating provides the surface tilt. The liquid crystal material may be nematic, cholesteric, or smectic.
摘要:
A liquid crystal display cell comprises two cell walls spaced apart to enclose a layer of liquid crystal material. The cell walls carry electrode structures, e.g. arranged in rows and columns to give an x, y matrix of addressable elements or pixels. The liquid crystal material is aligned by a grating (grooved) structure on one or both cell walls. This grating structure is a bigrating with one symmetrical grating and an asymmetric grating which may be orthogonal to the symmetric grating. The grooves of the asymmetric grating varying their depth or asymmetry along the lengths to give a locally varying pretilt whose longer range average provides a pretilt in a preferred range, e.g. about 2-24 degrees.
摘要:
In order to the effects of impact on liquid crystal devices a polymer network is introduced into ferroelectric liquid crystal cells. A liquid crystal device comprises two spaced cell walls each bearing electrode structures and treated on at least one facing surface with an alignment layer, a layer of a smectic liquid crystal material enclosed between the cell walls, characterised in that the liquid crystal material contains a small amount of monomer. The liquid crystal material may also contain a photoinitiator. The monomer material may be cured to produce the polymer network; the curing may be carried out in the presence of an electric or magnetic field. Further, the monomer may be cured in an isotropic or liquid crystal phase.
摘要:
In order to reduce the effects of impact on liquid crystal devices a polymer network is introduced into ferroelectric liquid crystal cells. A liquid crystal device comprises two spaced cell walls each bearing electrode structures and treated on at least one facing surface with an alignment layer, a layer of a smectic liquid crystal material enclosed between the cell walls, characterised in that the liquid crystal material contains a small amount of monomer. The liquid crystal material may also contain a photoinitiator. The monomer material may be cured to produce the polymer networks the curing many be carried out in the presence of an electric or magnetic field. Further, the monomer may be cured in an isotropic or liquid crystal phase.
摘要:
The invention relates to a method of patterning a layer formed from a fixable material such as photopolymer on a surface in a desired pattern. The method involves coating selected areas of the substrate with an adhesion promoter and subsequently coating the fixable material. The fixable material is then fixed, for instance by curing by exposure to UV radiation. The adhesion promoter is adapted to have a surface energy which is designed to adhere to the substrate or selected areas thereof and also to the fixed material such that fixed material may be easily removed from areas of the substrate not coated with adhesion promoter but retained in areas where the adhesion promoter has bonded to the substrate.
摘要:
Liquid crystal devices are formed by a layer of a liquid crystal material enclosed between two cell walls, both carrying electrode structures, and one or both walls treated to align molecules of the liquid crystal material. Most alignment treatment give alignment and surface pretilt with a strong azimuthal and zenithal anchoring energy to contacting liquid crystal molecules. The invention reduces at least one of the azimuthal zenithal or translational anchoring energy to improve switching characteristics and optical performance by allowing movement of liquid crystal molecules at or close to the cell wall. The reduction of anchoring energy may be achieved by an oligomer or short chain polymer which is either spread on the surface or added to the liquid crystal material. The size of oligomer or short chain polymer is low enough that it does not appreciably phase separate from the liquid crystal material. The polymer layer has the characteristics of having imperfect solubility in the liquid crystal material used in the device, of having a physical affinity for the surface of the substrate, and of retaining a substantially liquid like surface at the polymer/liquid crystal interface. The polymer may be formed by polymerisation of reactive low molecular weight materials in solution in the liquid crystal fluid. The resulting solution or dispersion of polymer in liquid crystal is then filled into the cell, and the polymer is allowed to coat the substrate surfaces.
摘要:
A first layer of photoresist material, sensitive to radiation of a first wavelength, has a second layer of photoresist material, sensitive to radiation of a second wavelength, deposited thereon. A pattern of radiation of the second wavelength is then formed on the second layer of photoresist material which is subsequently treated with a solvent, in which the first layer of photoresist material is insoluble, to develop a first periodic profile. The first layer of photoresist material is then exposed to radiation of the first wavelength through the first periodic profile and treated to develop a second periodic profile. By directing the radiation of the second wavelength through the first periodic profile at an angle to normal to the first material photoresist material a blaze profile may be obtained.
摘要:
A bistable nematic liquid crystal device cell is provided with a surface alignment grating on at least one cell wall and a surface treatment on the other wall. Such treatment may be a homeotropic alignment or a planar alignment with or without an alignment direction, and zero or a non zero pretilt. The surface profile on the monograting is asymmetric with its groove height to width selected to give approximately equal energy within the nematic material in its two allowed alignment arrangements. The monograting may be formed by a photolithographic process or by embossing of a plastics material. The cell is switched by dc pulses coupling to a flexoelectric coefficient in the material, or by use of a two frequency addressing scheme and a suitable two frequency material. Polarisers either side of the cell distinguish between the two switched states. The cell walls may be rigid or flexible, and are coated with electrode structures, e.g. in row and column format giving an x,y matrix of addressable pixels on the cell.