摘要:
Metamaterials are used in well logging measurement tools to position-shift and size-scale antennas such that they can be placed very close to the outer perimeter of the tool, which can improve azimuthal sensitivity and vertical resolution. Antennas of an azimuthal pipe inspection or induction-based borehole imaging tool can be placed with minimal stand-off against a borehole wall. Use of such metamaterials can improve the resolution of logs or images that are obtained by such tools. The metamaterials also can be used to effectively centralize radial coils. Disclosed implementations of metamaterials can be used with gradient ranging tools to effectively increase the spacing between ranging antennas. Increased spacing can maximize the signal levels with respect to noise, without producing distortions that are observed with the inclusion of magnetic materials.
摘要:
The operational position of a moveable device is detected using a magnetic-type logging tool. The logging tool generates a baseline log of the moveable device in a non-actuated position, and a response log of the moveable device in an actuated position. The baseline and response logs are then compared in order to determine the operational position of the moveable device.
摘要:
The disclosure concerns a device for obtaining electromagnetic measurements in a wellbore. In one implementation, the device includes an electromagnetic source carried by the device and a metamaterial arranged to cover a portion of the device in order to divert electromagnetic waves from the source around the covered portion of the device. In one version, the electromagnetic radiation from the source impinging on the portion of the device covered by the metamaterial, and on the electronics carried by the devices that are covered by the metamaterial is reduced. Depending on the implementation, the electromagnetic source may be an antenna, such as a coil antenna. Also, the antenna coil may be wrapped circumferentially around the tool.
摘要:
The disclosed embodiments include systems and methods to image a borehole. In one embodiment, a borehole imaging system having a borehole imaging tool and a processor is provided. The borehole imaging tool includes a magnetic field source and an array of electrode buttons. The borehole imaging tool also includes a galvanic source operable to inject an electrical current through one or more electrode buttons of the array of electrode buttons into the formation. The processor is operable to determine a differential voltage between at least two electrode buttons of the array of the electrode buttons, and determine the current through the one or more electrode buttons. The processor is also operable to determine a magnetic susceptibility and a resistivity of the formation based on the differential voltage and the current, respectively, and construct a visual representation of the formation based on the resistivity and the magnetic susceptibility of the formation.
摘要:
Metamaterials are used in well logging measurement tools to position-shift and size-scale antennas such that they can be placed very close to the outer perimeter of the tool, which can improve azimuthal sensitivity and vertical resolution. Antennas of an azimuthal pipe inspection or induction-based borehole imaging tool can be placed with minimal stand-off against a borehole wall. Use of such metamaterials can improve the resolution of logs or images that are obtained by such tools. The metamaterials also can be used to effectively centralize radial coils. Disclosed implementations of metamaterials can be used with gradient ranging tools to effectively increase the spacing between ranging antennas. Increased spacing can maximize the signal levels with respect to noise, without producing distortions that are observed with the inclusion of magnetic materials.
摘要:
A substance saturation sensing method includes making a resistivity measurement of a formation proximate to a well with a logging tool prior to installation of a casing string in the well. After the casing string is installed in the well, a first set of measurements of the formation is made with a monitoring system to generate a measured response. A set of calibration values is calculated based on the first set of measurements to produce a resistivity that matches the resistivity measurement. A second set of measurements of the formation is made with the monitoring system during or after saturating of a substance occurs in the formation. At least one parameter indicative of the saturating of the substance in the formation is determined based on the second set of the measurements and the set of calibration values.
摘要:
Aspects of the subject technology relate to systems and methods for identifying values of mud and formation parameters based on measurements gathered by an electromagnetic imager tool through machine learning. One or more regression functions that model mud and formation parameters capable of being identified through an electromagnetic imager tool as a function of possible tool measurements of the electromagnetic imager tool can be generated using a known dataset associated with the electromagnetic imager tool. One or more tool measurements obtained by the electromagnetic imager tool operating to log a wellbore can be gathered. As follows, one or more values of the mud and formation parameters can be identified by applying the one or more regression functions to the one or more tool measurements.
摘要:
Aspects of the subject technology relate to systems and methods for identifying values of mud and formation parameters based on measurements gathered by an electromagnetic imager tool through machine learning. One or more regression functions that model mud and formation parameters capable of being identified through an electromagnetic imager tool as a function of possible tool measurements of the electromagnetic imager tool can be generated using a known dataset associated with the electromagnetic imager tool. One or more tool measurements obtained by the electromagnetic imager tool operating to log a wellbore can be gathered. As follows, one or more values of the mud and formation parameters can be identified by applying the one or more regression functions to the one or more tool measurements.
摘要:
A well monitoring system includes a plurality of transmitter coils coupled to an exterior of a casing positioned within a wellbore, wherein one or more first transmitter coils are positioned at a first location and one or more second transmitter coils are positioned at a second location axially offset from the first location. At least one receiver coil is coupled to the exterior of the casing and positioned at the second location. A power source is communicably coupled to the one or more first and second transmitter coils. The one or more first transmitter coils generates a magnetic field detectable by the at least one receiver coil, and the one or more second transmitter coils generates a bucking signal that minimizes a direct coupling between the one or more first transmitter coils and the at least one receiver coil.
摘要:
Metamaterials are used in well logging measurement tools to position-shift and size-scale antennas such that they can be placed very close to the outer perimeter of the tool, which can improve azimuthal sensitivity and vertical resolution. Antennas of an azimuthal pipe inspection or induction-based borehole imaging tool can be placed with minimal stand-off against a borehole wall. Use of such metamaterials can improve the resolution of logs or images that are obtained by such tools. The metamaterials also can be used to effectively centralize radial coils. Disclosed implementations of metamaterials can be used with gradient ranging tools to effectively increase the spacing between ranging antennas. Increased spacing can maximize the signal levels with respect to noise, without producing distortions that are observed with the inclusion of magnetic materials.