Abstract:
A bleed valve for an air plenum includes a valve body having a poppet seat, a poppet supported by the valve body and movable relative to the poppet seat, and piston slideable relative to the poppet and movable relative to the poppet between an extended position and a retracted position. Gas turbine engines and methods of bleeding fluid from gas turbine engines are also described.
Abstract:
A fuel pump arrangement including a housing and an impeller located within the housing configured for receiving cold fuel through an inlet of the housing, wherein the impeller includes a series of vanes for drawing fluid and a nose cone defining an axis, wherein the nose cone includes a channel therethrough for passing warm fuel to an exterior surface of the nose cone for mixing with the cold fuel.
Abstract:
A valve according to an example of the present disclosure includes a poppet head configured to move with respect to a valve outlet of the valve. A first spring is configured to be compressed with a force generated by fluid flow through the valve, and compression of the first spring allows the poppet head to move towards the valve outlet. A second spring is configured to allow the poppet head to move toward the valve outlet when compressed. A method for controlling fluid flow is also disclosed.
Abstract:
A bleed valve includes a valve housing defining an inlet and an outlet with a flow path for fluid communication from the inlet to the outlet. A poppet head is connected to the valve housing by a primary spring and a secondary spring. The poppet head is configured for movement relative to the valve housing between: a fully open position in which the poppet head is spaced apart from the inlet to allow flow through the flow path, with the primary spring and secondary spring both expanded; a partially closed position in which the poppet head is spaced apart from the inlet but is closer to the inlet than in the fully open position, with the primary spring compressed; and a fully closed position in which the poppet head seats against the valve housing blocking flow through the flow path, with the primary spring and the secondary spring both compressed.
Abstract:
An engine fuel system is disclosed for managing drainage of fuel in response to an engine shut-down condition. For normal operation, a piston of a piston assembly is maintained in a first position by pressurized fuel in a volume on a first side of the piston. In response to engine shut-down, pressure is removed from the first side of the piston and fuel in the volume on the first side of the piston is drained into a return conduit that is part of the fuel system's thermal management system. Displacement of the piston in response to removal of pressure on the first side of the piston creates a volume on a second side of the piston for drainage of fuel from a fuel manifold.
Abstract:
An engine fuel system is disclosed for managing drainage of fuel in response to an engine shut-down condition. For normal operation, a piston of a piston assembly is maintained in a first position by pressurized fuel in a volume on a first side of the piston. In response to engine shut-down, pressure is removed from the first side of the piston and fuel in the volume on the first side of the piston is drained into a return conduit that is part of the fuel system's thermal management system. Displacement of the piston in response to removal of pressure on the first side of the piston creates a volume on a second side of the piston for drainage of fuel from a fuel manifold.
Abstract:
A fluid cooling arrangement in a gas turbine engine for aerospace propulsion includes an inner structure. Also included is an outer structure disposed radially outwardly of the inner structure, the outer structure and the inner structure defining a bypass flow path. Further included is at least one strut operatively coupling the inner structure to the outer structure. Yet further included is at least one cooling tube formed within the at least one strut, the at least one cooling tube configured to cool a fluid passing through the at least one cooling tube upon convective cooling of the at least one strut as air passes through the bypass flow path and over the at least one strut.
Abstract:
A fluid cooling arrangement in a gas turbine engine for aerospace propulsion includes an inner structure. Also included is an outer structure disposed radially outwardly of the inner structure, the outer structure and the inner structure defining a bypass flow path. Further included is at least one strut operatively coupling the inner structure to the outer structure. Yet further included is at least one cooling tube formed within the at least one strut, the at least one cooling tube configured to cool a fluid passing through the at least one cooling tube upon convective cooling of the at least one strut as air passes through the bypass flow path and over the at least one strut.
Abstract:
A fuel pump arrangement including a housing and an impeller located within the housing configured for receiving cold fuel through an inlet of the housing, wherein the impeller includes a series of vanes for drawing fluid and a nose cone defining an axis, wherein the nose cone includes a channel therethrough for passing warm fuel to an exterior surface of the nose cone for mixing with the cold fuel.
Abstract:
A fluid pulsation attenuating arrangement includes an enclosure and a tubular member. The tubular member extends through the enclosure defining a chamber outside of the tubular member but inside of the enclosure. The tubular member includes a wall separating an interior passage of the tubular member and the chamber. A plurality of holes is formed in the wall and fluidically connects the chamber to the interior passage. An energy absorber is inside the chamber.