Abstract:
A peripheral component interconnect (PCI) device is provided for use in an environmental control and life support system (ECLSS). The PCI device includes a control card, mounting slots each of which is receptive of the control card and coupled with a piece of ECLSS equipment and a backplane configured to respectively provide, via communication and power signals, communications and power to the control card in any one of the mounting slots. With the control card received in one of the mounting slots, the control card accommodates multiple power levels, executes commutation logic and executes one or more of active current control and active current modulation in accordance with the one of the mounting slots and the piece of the ECLSS equipment coupled therewith.
Abstract:
An environmental control system includes a broadcast-type controller area network (CAN) bus and a plurality of configurable modular controllers coupled to the CAN bus. Each of the plurality of configurable modular controllers includes a modular controller card with a microprocessor and a modular driver board configured to connect and disconnect to and from the controller card. The environmental control system further includes one or more sensors and a primary controller. The sensors are configured to sense one or more parameter values and to provide the one or more parameter values on the CAN bus. The primary controller is configured to communicate with each of the configurable modular controllers via the CAN bus.
Abstract:
A sensorless motor controller includes a variable link control, including a radiation-hardened field programmable gate array (FPGA) and a back electromotive force (EMF) decoder circuit. The back EMF decoder infers the position of a rotor of the motor. A filter on the decoder conditions the back EMF signal and has multiple cutoff frequencies which can be dynamically controlled by the FPGA in order to compensate for phase shift in the back EMF signal. The FPGA also controls a variable DC link and its digital speed control loop.
Abstract:
A sensorless motor controller includes a variable link control, including a radiation-hardened field programmable gate array (FPGA) and a back electromotive force (EMF) decoder circuit. The back EMF decoder infers the position of a rotor of the motor. A filter on the decoder conditions the back EMF signal and has multiple cutoff frequencies which can be dynamically controlled by the FPGA in order to compensate for phase shift in the back EMF signal. The FPGA also controls a variable DC link and its digital speed control loop.