Abstract:
Methods to wipe a print head are described. In an example of a method, an amount of treatment fluid is determined based on a temperature of the print head and the print head is wiped with the determined amount of treatment fluid and a wiping medium.
Abstract:
Examples include a method for priming a printhead that comprises a bag associated with a pump. A first control signal, which corresponds to a first target pressure, is applied to the pump. Directly after the application of the first control signal, a second control signal, which corresponds to a second target pressure, is applied to the pump. The second target pressure is lower than the first target pressure.
Abstract:
Examples in accordance with the present disclosure are directed to a method including generating a negative fluid pressure between a fluid supply and a first port of a fluidic ejection device, and generating a positive fluid pressure between the fluid supply and a second port of the fluidic ejection device. The method further includes selectively activating a first priming pump connected to the first port in response to an indication that the first port is transitioning from an open state to a closed state, wherein the selective activation of the first priming pump causes the first port to remain in the open state and causes fluid within the fluidic ejection device to exit through the first port and to recirculate along a fluid flow path.
Abstract:
According to an example, a printhead storage device comprises a printhead pocket to receive a printhead, a receptacle with an interior chamber wherein printing fluid is provided, and a fluid interconnect device comprising a fluid path with the interior chamber. Upon insertion of a printhead to the pocket, the fluid interconnect device is connected to the printhead, thereby providing a fluid connection between the printhead and the interior chamber and wherein the printhead is not operable when inserted in the printhead pocket.
Abstract:
Examples include a method for operating a printing device comprising a specific pen. The method comprises receiving future specific pen firing data related to a plurality of upcoming successive print jobs and collecting historical specific pen firing data. The method further comprises determining a level and timing of servicing of the specific pen in function of both of the received future specific pen firing data and of the collected historical specific pen firing data.
Abstract:
Examples associated with printer configuration are disclosed. One example includes printing, using a printer, a first portion of a test patch in a first print direction. A second portion of the test patch is printed in a second print direction. The second portion is printed at a first offset from the first portion. A first portion of a second test patch is printed in the first print direction, and a second portion of the second test patch is printed in the second print direction at a second offset from the first portion of the second test patch. The printer is configured to print in the second print direction using one of the first offset and the second offset based on a selection between the first test patch and the second test patch.
Abstract:
A system comprises a printhead including a nozzle, a temperature sensor and a processor. The temperature sensor detects the temperature of a location of a print surface upon firing the nozzle to eject a drop of printing fluid to the location of the print surface. The processor determines whether the nozzle ejected the drop properly using the detected temperature.
Abstract:
A cleaning module includes an actuator device, a fluid chamber, and a wiper member. The actuator device may enter an activation state based on a movement of at least a portion of the actuator device in response to an engagement with the printhead. The fluid chamber may store and supply fluid to the porous wipe material in response to the activation state of the actuator device. The wiper member may apply pressure to a porous wipe material including the fluid therein to wipe the printhead.
Abstract:
A cleaning module includes an actuator device, a fluid chamber, and a wiper member. The actuator device may enter an activation state based on a movement of at least a portion of the actuator device in response to an engagement with the printhead. The fluid chamber may store and supply fluid to the porous wipe material in response to the activation state of the actuator device. The wiper member may apply pressure to a porous wipe material including the fluid therein to wipe the printhead.