Abstract:
A radiation measuring device having a plurality of sensors configured to generate charges in response to the radiation includes a signal processing device. The signal processing device uses an signal generated by a proton beam irradiation device upon changing of beam energy and causes accumulation values of charges output from the sensors to be separately stored in a main control device for each value of the energy. The main control device calculates depth dose profiles for values of the beam energy from the accumulation values stored in the main control device and representing the charges. The main control device calculates a range of the beam for each of the values of the beam energy from the depth dose profiles, corrects the depth dose profiles for the values of the beam energy using a correction coefficient that depends on the range and sums the corrected depth dose profiles.
Abstract:
A radiation therapy apparatus that enhances the reliability and ease of use of a treatment is provided. A radiation therapy apparatus includes: a treatment bed moving a top plate with an object to be treated Pt placed on the top plate to a predetermined treatment location; an imaging apparatus moving to the predetermined treatment location from a direction different from the direction of movement of the top plate and picking up an image of the object to be treated; and an irradiation apparatus provided between the treatment bed and the imaging apparatus, extensible, and applying a radioactive ray to the object to be treated. When the CT apparatus moves to the treatment location, the irradiation apparatus moves to a predetermined waiting position P1. When applying a radioactive ray to an object to be treated, the irradiation apparatus moves to a predetermined irradiation position P3.
Abstract:
To provide a particle beam therapy device that expands an irradiation field while avoiding an increase in size of a scanning unit or an irradiation device including the scanning unit. A shift unit 36 is provided downstream of a scanning unit 34. The shift unit 36 deflects a carbon beam as a particle beam to shift the irradiation field, thereby forming an expanded irradiation field. The shift unit 36 includes a first shift electromagnet 42 that shifts the irradiation field in a Y direction and a second shift electromagnet 44 that shifts the irradiation field in an X direction. The scanning unit is dynamically controlled, and the shift unit 36 is statically controlled.
Abstract:
A structure configuring a ridge filter has line symmetry about a line vertical to a depth direction passing the center of the structure. A small structure obtained in such a way that the structure is divided by this line has a bilaterally asymmetric shape about a center line in an iterative direction, and has a point symmetric shape about an intersection between the center line in the iterative direction and the center line in the depth direction. Thicknesses in the iterative direction of an uppermost stream surface and a lowermost stream surface in the depth direction are equal to each other. The structure is configured so that a thick portion in the iterative direction of the uppermost stream surface and the lowermost stream surface is not present in the depth direction.
Abstract:
To implement downsizing of an apparatus and highly accurate beam irradiation. An irradiation nozzle 4 that irradiates a target object Pt with a radiotherapy beam includes: a nozzle base part 42 fixed on a beam axis 40 through which the radiotherapy beam passes; and a nozzle tip part that irradiates the target object with the radiotherapy beam that has passed through the nozzle base part, in which the nozzle tip part is fixed at a first position when the target object is irradiated with the radiotherapy beam and is fixed at a second position when the target object is imaged, and a curved movement path in which the nozzle tip part is movable between the first position and the second position is provided.
Abstract:
The present invention provides a particle therapy system including an irradiation compensating device made up of an energy absorber, a first collimator, and a second collimator for use in a short-range region. The irradiation compensating device is characterized by a mechanism for attaching and detaching the first energy absorber, first collimator, and second collimator. The first collimator is located upstream where the beam diameter is small with a view to suppressing the width of the compensating device, thereby contributing to making the compensating device small and lightweight. The second collimator is located downstream to improve penumbrae.