Abstract:
A system and method is provided for analyzing the movement of an object. The system is comprised of a sensor that is coupled to a processor that is configured to generate a volume that corresponds to a predefined area and the location of the object. The sensor detects the movement of the object and determines if the object's movement is within the volume. If the movement is within the volume, then an information channel is created between the volume and the user defined algorithm. The movement is then compared with the requirements of the user defined algorithm and accepted if the movement meets the requirements. Otherwise, the object's movement is discarded if the movement is not within the volume or does not meet the requirements of the user defined algorithm.
Abstract:
Cockpit display systems and methods for generating navigation displays including landing diversion symbology are provided. In one embodiment, the cockpit display system includes a cockpit monitor and a controller coupled to the cockpit monitor. The controller is configured to assess the current feasibility of landing at one or more diversion airports in a range of an aircraft on which the cockpit display system is deployed. The controller is further configured to assign each diversion airport to one of a plurality of predetermined landing feasibility categories, and generate a horizontal navigation display on the cockpit monitor including symbology representative of the feasibility category assigned to one or more of the diversion airports.
Abstract:
A system and method is provided for analyzing the movement of an object. The system is comprised of a sensor that is coupled to a processor that is configured to generate a volume that corresponds to a predefined area and the location of the object. The sensor detects the movement of the object and determines if the object's movement is within the volume. If the movement is within the volume, then an information channel is created between the volume and the user defined algorithm. The movement is then compared with the requirements of the user defined algorithm and accepted if the movement meets the requirements. Otherwise, the object's movement is discarded if the movement is not within the volume or does not meet the requirements of the user defined algorithm.
Abstract:
A system and method are provided for employing an intelligent stencil mask to interact with a touch screen interface and thereby reduce the probability of accidental control function activation. A touch screen interface onboard an aircraft is coupled to a processor and is configured to generate a first virtual mask having a first region and a second region. A user interaction is then detected with one of the first region and the second region. A first reconfigured virtual mask is generated if the user interacted with the second region. However, an aircraft control function is activated if the user interacted with the first region.
Abstract:
A system and method for operating an aircraft in response to input gestures is provided. The method is comprised of generating a valid interaction volume substantially surrounding a user's hand, based on the location of the user's arm and hand relative to a pilot support apparatus, recognizing when a gesture performed within the valid interaction volume indicates a valid input, and generating an associated system command.
Abstract:
An aircraft electric taxi drive system may provide electric taxiing of an aircraft by integrating control of an electric drive and an engine during the taxi phase of a flight plan. In some embodiments, the engine may provide supplemental drive to the aircraft's wheels during electric taxiing. The engine may be maintained on while the electric drive provides the main driving force to the wheels. A controller may determine the criteria to operate the engine as the electric drive taxis the aircraft to achieve a target ground speed. In some embodiments, a pilot interface may integrate control of the electric drive and the engine into a single throttle control providing the pilot an intuitive and singular point to throttle the aircraft without having to decide which taxi source is providing the taxi driving force.
Abstract:
A vehicle display system includes a display device and a processor. The processor is in operable communication with the display device and is coupled to receive vehicle path data and vehicle state data. The vehicle path data are representative of a planned vehicle path of the vehicle, and the vehicle state data are representative of current vehicle state. The processor is configured, upon receipt of these data, to command the display device to render at least a portion of the planned vehicle path and to selectively render one or both of a speed change point symbol and an acceleration point symbol on the current vehicle path. The symbols are rendered in a manner that is more intuitive for vehicle pilots.
Abstract:
A system and method provide feedback regarding the confirmation of automated and operator assigned tasks, wherein one of the operator tasks and automation tasks includes a value for a parameter. The operator task and automation task that includes the value is rendered subsequent to being accomplished if the value does not match the parameter.
Abstract:
An aircraft electric taxi drive system may provide electric taxiing of an aircraft by integrating control of an electric drive and an engine during the taxi phase of a flight plan. In some embodiments, the engine may provide supplemental drive to the aircraft's wheels during electric taxiing. The engine may be maintained on while the electric drive provides the main driving force to the wheels. A controller may determine the criteria to operate the engine as the electric drive taxis the aircraft to achieve a target ground speed. In some embodiments, a pilot interface may integrate control of the electric drive and the engine into a single throttle control providing the pilot an intuitive and singular point to throttle the aircraft without having to decide which taxi source is providing the taxi driving force.
Abstract:
A vehicle decision support system and method capable of processing operational constraints, a flight plan, and appropriate environmental data to generate timely and readily comprehensible guidance are provided.