Abstract:
Methods and systems for depicting avionics data anomalies in an aircraft. Time series data is received from the avionics data source, a future time is predicted when a first anomaly threshold will be crossed based on the time series data, and the future time when the first anomaly threshold will be crossed is depicted on a display device associated with the aircraft.
Abstract:
Methods and systems are provided for operating a vehicle that supports an automated action, such as an aircraft supporting autopilot, autothrottle, and various other autonomous operations and operating modes. One exemplary method of operating a vehicle involves obtaining one or more user inputs pertaining to an automated action to be performed by an onboard system, obtaining current vehicle status information, determining an operational objective for the automated action based at least in part on the current status information and the one or more user inputs, and providing guidance information pertaining to the automated action in a manner that is influenced by the operational objective and the current status information. For example, the guidance information may include indication of a remedial action to resolve a discrepancy between the operational objective and a projected aircraft behavior in the context of the operational objective or the current vehicle status.
Abstract:
Systems and methods directed to improvements in the presentation of CAVS procedures on an aircraft display system over what is conventionally available are provided. The provided systems and methods employ a vertical situation display (VSD), thereby presenting additional relevant visual approach information, such as a vertical distance between the ownship and the target aircraft, descent rates of the ownship and the target and an alerting function for the user-selected CAVS range. The provided systems and methods also capably receive and process user selections of target aircraft from both the lateral display and the VSD.
Abstract:
A flight deck system for providing task management assistance in managing the flight path to the flight crew is provided. The system is configured to: mine flight plan data for a current flight plan, navigational data, and vertical situation display (VSD) data; obtain notification data items originating from onboard avionics systems and systems external to the aircraft that indicate upcoming conditions that will affect the current flight plan; automatically analyze the mined flight plan data and the notification data items to identify a sensed deviation condition; automatically identify an aircraft-related deviation condition from an aircraft failure event; receive flight crew notification of a non-sensed deviation condition; automatically generate a plurality of flight plan deviation options to accommodate a sensed deviation condition, an aircraft-related deviation condition, or a non-sensed deviation condition; and present graphical elements representative of the flight plan deviation options to the flight crew on an integrated interactive graphical user interface.
Abstract:
A method for providing operational awareness data onboard an aircraft, by a computing device comprising at least a processor and a system memory element, is provided. The method continuously identifies deviations from operational goals of the aircraft, by the processor, based on a current state of the aircraft, a predicted state of the aircraft, and flight crew perception of the current state and the predicted state; and autonomously initiates a dialogue with flight crew onboard the aircraft by providing voice-data prompts for user action onboard the aircraft, by the processor onboard the aircraft, based on the deviations.
Abstract:
Methods and systems are provided for operating a vehicle that supports an automated action, such as an aircraft supporting autopilot, autothrottle, and various other autonomous operations and operating modes. One exemplary method of operating a vehicle involves obtaining one or more user inputs pertaining to an automated action to be performed by an onboard system, obtaining current vehicle status information, determining an operational objective for the automated action based at least in part on the current status information and the one or more user inputs, and providing guidance information pertaining to the automated action in a manner that is influenced by the operational objective and the current status information. For example, the guidance information may include indication of a remedial action to resolve a discrepancy between the operational objective and a projected aircraft behavior in the context of the operational objective or the current vehicle status.
Abstract:
Systems and methods for displaying a location reference indicator (LRI) associated with an ownship icon are provided. In various embodiments, an airport moving map (AMM) is displayed, and the ownship icon is displayed in the AMM, where the ownship icon represents the ownship. A degree of zoom of the AMM is determined. In response to a determination that the degree of zoom is not within a range of center referenced threshold values, a first LRI is displayed that indicates that the icon representing the ownship is not to scale with other objects displayed in the AMM. In response to a determination that the degree of zoom is within the range of center referenced threshold values, a second LRI is displayed.
Abstract:
A system and method intelligently mines information and briefs an aircrew on conditions outside the aircraft. A mission information manager proactively mines incoming data sources, filters for relevance to current flight, retrieves the most up-to-date information, dynamically selects an appropriate format based on perceptual/cognitive affordances of content, and presents integrated, intuitive data that allows the flight crew to rapidly acquire relevant awareness of conditions outside the aircraft. An expert mission model system reviews incoming information for any situations that are of immediate mission concern. The system presents this information to the flight crew's attention while they have the greatest operational flexibility. Additionally, a human factors module provides decision aiding for select critical phases while taking into account information both outside and inside the aircraft.
Abstract:
A method of operating an aircraft during a flight is provided. An onboard monitoring subsystem of the aircraft detects that a flight crew member is fatigued, and an automated flight crew training exercise is activated in response to detecting that the flight crew member is fatigued. The flight crew member is then engaged with the automated flight crew training exercise, including instructions intended to alleviate flight crew fatigue.
Abstract:
Methods and systems for depicting avionics data anomalies in an aircraft. Time series data is received from the avionics data source, a future time is predicted when a first anomaly threshold will be crossed based on the time series data, and the future time when the first anomaly threshold will be crossed is depicted on a display device associated with the aircraft.