Abstract:
Methods and systems are provided for engaging a vertical navigational descent (VNAV/DES) mode of a flight management system (FMS) for an aircraft. The method comprises retrieving a preset vertical navigation (VNAV) profile for a descent path of the aircraft that is stored in the FMS. The current flight path angle (FPA) and vertical speed (VS) of the aircraft is determined and intercept parameters are calculated to intercept the preset VNAV profile with the VNAV/DES mode of the FMS. The intercept parameters are calculated based on the current FPA and VS and displayed to an aircrew member of the aircraft on a visual display device. The aircrew member is allowed to accept the intercept parameters with the VNAV/DES mode of the FMS.
Abstract:
Systems and methods, and non-transitory computer readable mediums directed to generating an adaptive glide slope angle and allowing a pilot to interact with the generated glide slope angle are provided. The systems and methods, and non-transitory computer readable mediums retrieve, from a navigation database (NDB), a designated approach procedure for the aircraft, and identify a designated glide slope angle (D_GSA) based thereon. The systems and methods, and non-transitory computer readable mediums receive sensed actual weather data and sensed aircraft status data and generate an adaptive glide slope angle A_GSA based thereon. The systems and methods, and non-transitory computer readable mediums allow modification of and modify, or prevent modification of, the designated approach procedure with the A_GSA based on the determination of whether or not the A_GSA is compatible with the designated approach procedure.
Abstract:
A method and apparatus includes strategies for improving required time of arrival reliability by an aircraft comprising determining a speed correction for one of AT speed constraints or an AT or ABOVE speed constraints, wherein the determining is selected from one or more of the mechanisms from the group consisting of continuous RTA speed management between constraints, padding of the AT speed constraints and the AT or ABOVE speed constraints; decelerating proactively; and using a variable guidance margin, wherein the guidance margin is a speed change not reflected in a flight plan prediction.
Abstract:
A method and apparatus includes strategies for improving required time of arrival reliability by an aircraft comprising determining a speed correction for one of AT speed constraints or an AT or ABOVE speed constraints, wherein the determining is selected from one or more of the mechanisms from the group consisting of continuous RTA speed management between constraints, padding of the AT speed constraints and the AT or ABOVE speed constraints; decelerating proactively; and using a variable guidance margin, wherein the guidance margin is a speed change not reflected in a flight plan prediction.
Abstract:
Methods and systems are provided for engaging a vertical navigational descent (VNAV/DES) mode of a flight management system (FMS) for an aircraft. The method comprises retrieving a preset vertical navigation (VNAV) profile for a descent path of the aircraft that is stored in the FMS. The current flight path angle (FPA) and vertical speed (VS) of the aircraft is determined and intercept parameters are calculated to intercept the preset VNAV profile with the VNAV/DES mode of the FMS. The intercept parameters are calculated based on the current FPA and VS and displayed to an aircrew member of the aircraft on a visual display device. The aircrew member is allowed to accept the intercept parameters with the VNAV/DES mode of the FMS.
Abstract:
A system and method of displaying optimized aircraft energy level to a flight crew includes processing flight plan data, in a processor, to determine the optimized aircraft energy level along a descent profile of the aircraft from cruise altitude down to aircraft destination, and continuously processing aircraft data, in the processor, to continuously determine, in real-time, an actual aircraft energy level. The actual aircraft energy level of the aircraft is continuously compared, in the processor, to the optimized aircraft energy level. The processor is use to command a display device to render an image that indicates: (i) the optimized aircraft energy level, (ii) how the actual aircraft energy level differs from the optimized aircraft energy level, and (iii) how the actual aircraft energy level is trending relative to the optimized aircraft energy level.
Abstract:
Systems and methods are provided for managing speed-constrained vehicle operations. One exemplary method of operating an aircraft involves identifying a speed constraint associated with a navigational reference point, determining a speed envelope region en route to the navigational reference point based at least in part on the first speed constraint, identifying a target speed en route to the navigational reference point, and determining a speed profile for autonomously operations en route to the navigational reference point within the speed envelope region. The speed profile intersects the target speed within the speed envelope region and a slope of the speed profile is influenced by the target speed, for example, to effectuate or approximate the target speed by increasing the duration of time operation at or around the target speed is achieved. In one or more embodiments, multiple different target speeds associated with different flight levels or operating regions are accounted for.
Abstract:
Systems and methods are provided for managing speed-constrained vehicle operations. One exemplary method of operating an aircraft involves identifying a speed constraint associated with a navigational reference point, determining a speed envelope region en route to the navigational reference point based at least in part on the first speed constraint, identifying a target speed en route to the navigational reference point, and determining a speed profile for autonomously operations en route to the navigational reference point within the speed envelope region. The speed profile intersects the target speed within the speed envelope region and a slope of the speed profile is influenced by the target speed, for example, to effectuate or approximate the target speed by increasing the duration of time operation at or around the target speed is achieved. In one or more embodiments, multiple different target speeds associated with different flight levels or operating regions are accounted for.
Abstract:
Provided are enhanced flight guidance systems and methods for an aircraft. The method includes recognizing when the aircraft is in manual operation and an active flight path is different than the planned flight path. An interrupt is received and categorized as one of (i) obstacle, (ii) equipment/fuel, or (iii) pilot health monitor. A managed mode begins, including identifying a rejoining leg of the planned flight path at which to rejoin and a location on the rejoining leg at which to rejoin. A recapture path strategy is selected from (i) lateral, (ii) vertical, and (iii) mixed lateral and vertical. A recapture path to the location on the rejoining leg is computed. The computed recapture path includes speed targets and configuration requirements at dedicated points along the recapture path. Aircraft state data along the recapture path is predicted and guidance controls for the aircraft along the recapture path are generated.
Abstract:
Provided are enhanced flight guidance systems and methods for an aircraft. The method includes recognizing when the aircraft is in manual operation and an active flight path is different than the planned flight path. An interrupt is received and categorized as one of (i) obstacle, (ii) equipment/fuel, or (iii) pilot health monitor. A managed mode begins, including identifying a rejoining leg of the planned flight path at which to rejoin and a location on the rejoining leg at which to rejoin. A recapture path strategy is selected from (i) lateral, (ii) vertical, and (iii) mixed lateral and vertical. A recapture path to the location on the rejoining leg is computed. The computed recapture path includes speed targets and configuration requirements at dedicated points along the recapture path. Aircraft state data along the recapture path is predicted and guidance controls for the aircraft along the recapture path are generated.