Abstract:
A method of removing water from a mixture of iodine (I2) and water includes providing a mixture comprising iodine and water and: contacting the mixture with an adsorbent to selectively adsorb water from the mixture, contacting the mixture with a concentrated acid to absorb water from the mixture, separating the water from mixture by distillation, contacting the mixture with a gas that is inert to iodine (I2), contacting the mixture with hydrogen iodide (HI), or combinations thereof.
Abstract:
The present disclosure provides a composition including trifluoroacetyl iodide, at least one organic impurity and at least one inorganic impurity. The at least one organic impurity includes at least one of: difluoroiodomethane, pentafluoroiodoethane, iodomethane, iodopropane, dichlorotetrafluoroethane, dichlorotrifluoroethane, trichlorotrifluoroethane, methyltrifluoroacetate, trifluoroacetic anhydride, difluorobutane and methyl propane. The at least one inorganic impurity includes at least one of: hydrogen iodide, hydrogen chloride, iodine and hydrogen triiodide.
Abstract:
The invention provides polyurethane and polyisocyanurate foams and methods for the preparation thereof. More particularly, the invention relates to open-celled, polyurethane and polyisocyanurate foams and methods for their preparation. The foams are characterized by a fine uniform cell structure and little or no foam collapse. The foams are produced with a polyol premix composition which comprises a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a sterically hindered amine catalyst.
Abstract:
The invention provides polyurethane and polyisocyanurate foams and methods for the preparation thereof. More particularly, the invention relates to open-celled, polyurethane and polyisocyanurate foams and methods for their preparation. The foams are characterized by a fine uniform cell structure and little or no foam collapse. The foams are produced with a polyol premix composition which comprises a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a sterically hindered amine catalyst.
Abstract:
Disclosed is a process for the formation of a mixture of the compounds 2,3,3,3-tetrafluoropropene (HFO-1234yf) and vinylidene fluoride, comprising pyrolyzing 1,1,2-trifluoro-2-trifluoro-methyl-cyclobutane under conditions effective to produce a reaction product comprising HFO-1234yf and vinylidene fluoride in a 1234yf:vinylidene fluoride molar ratio of from about 0.5 to about 1.2.
Abstract:
The invention provides polyurethane and polyisocyanurate foams and methods for the preparation thereof. More particularly, the invention relates to open-celled, polyurethane and polyisocyanurate foams and methods for their preparation. The foams are characterized by a fine uniform cell structure and little or no foam collapse. The foams are produced with a polyol premix composition which comprises a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a sterically hindered amine catalyst.
Abstract:
The present invention provides routes for making 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) from commercially available raw materials. More specifically, this invention provides several routes for forming HCFO-1233zd from 3,3,3-trifluoropropene (FC-1234zf).
Abstract:
The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
Abstract:
The present disclosure relates to a method for producing trifluoroiodomethane (CF3I) from iodine (I2) and trifluoroacetic anhydride (TFAA) under photochemical conditions using ultraviolet (UV) light.
Abstract:
The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining trifluoroacetyl chloride (CF3COCl) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like composition.