Abstract:
Methods and system for alerting a Visual Decent Point (VDP) in an aircraft system. The methods and systems retrieve runway altitude data and Minimum Descent Altitude (MDA) data from an avionics database for a target runway. Data in the avionics database for the target runway does not include a published VDP. The method includes calculating the VDP based on a difference between the runway altitude data and the MDA so as to achieve a target downward acceptable glidepath angle during final descent from the MDA to the target runway. The method includes outputting an alert of the VDP by an output device of the aircraft system.
Abstract:
Systems and methods for detecting and representing traffic maneuvers are provided. The method includes receiving traffic information for a neighbor traffic. The method may use the neighbor traffic information to calculate a volume around the neighbor traffic, defined by min max thresholds related to the traffic information. The traffic information is monitored until the default time elapses, to thereby determine a delta latitudinal position, a delta longitudinal position, a delta altitude, a delta pitch, and a delta roll, of the neighbor traffic during the default time; and a traffic maneuver is identified upon the occurrence of one or more of (i) the delta latitudinal position exceeded the maximum latitudinal threshold, (ii) the delta longitudinal position exceeded the maximum longitudinal threshold, and (iii) the delta altitude exceeded the magnitude of the maximum altitude threshold. An enhanced symbolic indicator of the traffic maneuver is rendered on a map image.
Abstract:
A method for providing visual overlay assistance to a flight crew onboard an aircraft is provided. The method presents, via visual overlay device display, required settings for a plurality of flight deck instruments located in a flight deck onboard an aircraft, wherein the required settings are presented as graphical elements superimposed over each of the plurality of flight deck instruments.
Abstract:
A flight deck system and method in an aircraft for enhancing controller pilot datalink communication (CPDLC) operation is disclosed. The flight deck system includes a controller configured to: receive a CPDLC message having a CPDLC message type from a flight operation center (FOC) having an FOC name; retrieve an expected response time for the CPDLC message from an expected response time database containing expected response times for a plurality of CPDLC message types for FOCs; generate a timer function that causes the display of a timer (e.g., countdown timer) on an aircraft display device that has a set duration based on the expected response time; signal the aircraft display device to display the timer; monitor communications from flight crew for a response to the CPDLC message; and signal the aircraft display device to end the display of the timer when a communication has been detected within the set duration.
Abstract:
Methods and system for alerting a Visual Decent Point (VDP) in an aircraft system. The methods and systems retrieve runway altitude data and Minimum Descent Altitude (MDA) data from an avionics database for a target runway. Data in the avionics database for the target runway does not include a published VDP. The method includes calculating the VDP based on a difference between the runway altitude data and the MDA so as to achieve a target downward acceptable glidepath angle during final descent from the MDA to the target runway. The method includes outputting an alert of the VDP by an output device of the aircraft system.
Abstract:
A method of evaluating pilot performance receives and processes avionics data at a database system. The database system computes component scores for the pilot based on the avionics data. Each component score represents a performance grade for a pilot-controlled operation of the aircraft. The database system saves the component scores in association with a pilot performance record for the pilot, and calculates an overall score based on the component scores. The overall score represents a flight performance grade for the pilot. The database system saves the overall score in association with the pilot performance record, and generates a report derived from the component scores and the overall score. A graphical representation of the report is communicated to an electronic device.
Abstract:
Systems and methods for displaying object data within an airport moving map (“AMM”) are disclosed. In various embodiments, the systems may comprise an avionics database, a flight management system comprising a processor communicatively coupled to the avionics database, and/or a display communicatively coupled to the processor, the processor configured to receive AMM data from the avionics database, receive object data, and/or display the AMM, the AMM including an image of the object, the AMM further including an image of an area that may be obscured from a field of view of a pilot by the object
Abstract:
A system and method for increasing the vertical situational awareness of a pilot of a host aircraft, comprises rendering symbology on a vertical situation display of the host aircraft, the symbology comprising (1) a traffic scenario including at least the host aircraft and a second aircraft, the second aircraft involved in an ITP transition, and (2) flight level allocation data assigned to the second aircraft by air traffic control.
Abstract:
Systems and methods are provided for generating a modified flight to avoid a no turn situation. A current flight path of an aircraft is received from a source of current flight path of the aircraft. Current aircraft location data is received from at least one geospatial sensor of the aircraft. Terrain data is retrieved from an onboard database based on the current aircraft location data. The terrain data includes a first terrain obstacle and a second terrain obstacle. A determination is made regarding whether the current flight path of the aircraft leads to a no turn situation with respect to the first terrain obstacle and the second terrain obstacle. A first notification associated with implementation of a modified flight path in accordance with a viable turn with respect to the first terrain obstacle and the second terrain obstacle is displayed on an onboard display device based on the determination.
Abstract:
A method of providing contextual display modes for a vertical takeoff and landing (VTOL) vehicle including obtaining aircraft flight information including a current position and altitude; retrieving vertiport information for a vertiport at the current position of the aircraft; displaying, to one or more operators of the aircraft, a takeoff synthetic vision display mode; transitioning, as the current altitude approaches the transitional altitude, from the takeoff synthetic vision display mode to a cruise synthetic vision display mode, wherein the cruise synthetic vision display mode represents the view from a cruise display viewpoint at the current altitude of the aircraft and at the current position of the aircraft; and displaying, in response to the current altitude equaling or exceeding the transitional altitude, the cruise synthetic vision display mode.