Abstract:
A heat conducting member is provided. The heat conducting member provided in this application includes a substrate and a heat conducting layer. The substrate includes a heat conducting surface. The heat conducting layer includes a transition layer and a protective layer. The transition layer is disposed on the heat conducting surface, and the protective layer is disposed on a surface that is of the transition layer and that is away from the heat conducting surface. Roughness Ra of the protective layer is less than or equal to 0.4. The transition layer can provide a hardness transition function between the substrate and the protective layer, to facilitate improving overall hardness of the heat conducting member. The protective layer may ensure surface hardness, to prevent an undesirable situation such as a scratch.
Abstract:
A ventilation denoising device that includes at least one ventilation module disposed with at least two air ducts inside, the air ducts are communicated end-to-end to form a circuitous air duct. The ventilation module is provided with a first ventilation opening communicated with one end of the air duct, and a second ventilation opening communicated with the other end of the air duct. Also disclosed is a ventilation denoising system equipped with the above mentioned ventilation denoising device. The ventilation denoising device can be installed outside equipments, such as a machine cabinet, as ventilation means thereof, and also reduce the noise generated during the equipment operation.
Abstract:
A thermoelectric cooler, a method for preparing a thermoelectric cooler, and an electronic device. The thermoelectric cooler includes two monocrystalline silicon substrates disposed opposite to each other and a plurality of semiconductor thermoelectric particles located between the two monocrystalline silicon substrates. An insulation layer is provided on a side that is of a monocrystalline silicon substrate and that faces the semiconductor thermoelectric particles. A conductive sheet is provided between the insulation layer and the semiconductor thermoelectric particles, and the conductive sheet is electrically connected to the semiconductor thermoelectric particles, so that the semiconductor thermoelectric particles form a serial connection circuit.
Abstract:
A ventilation denoising device that includes at least one ventilation module disposed with at least two air ducts inside, the air ducts are communicated end-to-end to form a circuitous air duct. The ventilation module is provided with a first ventilation opening communicated with one end of the air duct, and a second ventilation opening communicated with the other end of the air duct. Also disclosed is a ventilation denoising system equipped with the above mentioned ventilation denoising device. The ventilation denoising device can be installed outside equipments, such as a machine cabinet, as ventilation means thereof, and also reduce the noise generated during the equipment operation.