Abstract:
The signal sending method includes: generating, by a network device, a first indication signal, where the first indication signal is used to indicate that a terminal device is not paged and/or no system message changes, the first indication signal corresponds to a first international mobile subscriber identity IMSI set, and a quantity of IMSIs in the first IMSI set is less than or equal to a quantity of IMSIs corresponding to one paging occasion PO; and sending, by the network device, the first indication signal to a first terminal device, where the first terminal device is a terminal device corresponding to any IMSI in the first IMSI set.
Abstract:
A message transmission method and device relating to the field of communications technologies is disclosed, so as to improve an anti-interference capability in message transmission. The method includes: generating, by a base station, a scrambling code according to a first time parameter; then scrambling a system message according to the scrambling code; and finally sending the scrambled system message to a terminal on a physical broadcast channel. In this technical solution, because the first time parameter has different values at at least two different moments, scrambling codes determined at the at least two corresponding different moments are different. Therefore, a possibility at which the base station uses a same scrambling code to scramble a same system message repeatedly in a time period is reduced, so that an anti-interference capability in system message transmission is improved.
Abstract:
Embodiments of this application provide a method for transmitting positioning assistance data and a device. The method includes: receiving, by a network device, at least one positioning assistance data message sent by a positioning server, where the at least one positioning assistance data message is used to carry positioning assistance data; and broadcasting, by the network device, a system message to a terminal device, where the system message is used by the terminal device to obtain the positioning assistance data. According to the embodiments of this application, the network device broadcasts the system message to broadcast the positioning assistance data. In this way, a problem of low efficiency of transmitting existing centralized positioning assistance data can be resolved, and a problem in the prior art that a positioning server needs to perform signaling communication with each terminal device in a unicast transmission scenario can be avoided, thereby reducing signaling overheads.
Abstract:
Embodiments of the present invention disclose a data transmission method, a base station, and user equipment. The method in the embodiments of the present invention includes: receiving, by a base station, a first target sequence and uplink data that are sent by user equipment; determining, by the base station according to a first mapping relationship, a first target uplink sending parameter corresponding to the first target sequence, where the first mapping relationship is used to indicate a correspondence between an uplink sending parameter and a sequence; and demodulating and decoding, by the base station, the uplink data according to the first target uplink sending parameter.
Abstract:
A message transmission method and a device are used to accelerate a random access procedure. The method includes: receiving, by a terminal device, a repetition quantity of an uplink message from a network device, in response to determining that a reference signal receive power (RSRP) range of the terminal device is within an RSRP range corresponding to a signal coverage enhancement level 0, wherein the uplink message comprises a third message of a sequence of messages comprised in a random access attempt; calculating, by the terminal device, transmit power based on a power control parameter for the repetition quantity; and sending, by the terminal device, the uplink message to the network device based on the calculated transmit power.
Abstract:
A communication method includes: determining a preamble including M symbol groups; and sending the M symbol groups in K uplink subframe sets, where any uplink subframe set in the K uplink subframe sets includes one uplink subframe or more than one consecutive uplink subframes, any two uplink subframe sets in the K uplink subframe sets are spaced by at least one downlink subframe, and in each of the K uplink subframe sets at least one symbol group can be sent; N times of frequency hopping exist in the M symbol groups, each of the N times of frequency hopping is frequency hopping between adjacent symbol groups in the M symbol groups, and frequency hopping directions of at least two of the N times of frequency hopping are opposite, N is less than M, K is less than or equal to M, and K, N and M are positive integers.
Abstract:
Embodiments of the present invention provide a resource scheduling method. In the method, a terminal device receives a downlink control information (DCI) indication sent by a network device, wherein the DCI is used to indicate a first resource, and the first resource is a time-frequency resource for narrowband physical uplink shared channel (NPUSCH) format 2 transmission, wherein the NPUSCH format 2 is used to bear downlink hybrid automatic repeat request-acknowledgment (HARQ-ACK) feedback information, determines the first resource according to the DCI, and sends a scheduling request to the network device on the first resource
Abstract:
Embodiments of the present invention provide an information sending method, including: determining, by a base station, first information indicating a first carrier frequency offset, where the first carrier frequency offset is a carrier frequency offset between an actual cell carrier center frequency and a cell carrier center frequency that is obtained by a terminal; and sending, by the base station, the first information to the terminal, where the first information is used to obtain the actual cell carrier center frequency. According to the technical solutions provided in the embodiments of the present invention, quality of communication between the terminal and the base station is effectively improved.
Abstract:
The present invention provides a method, a device, and a system for notifying a terminal type supported by a current cell, so that a UE can identify the terminal type supported by the current cell as soon as possible. The method includes: carrying preset indication information in a downlink signal, where the indication information is used to indicate the terminal type supported by the current cell, the preset indication information is agreed upon by a network side and a terminal in advance, and the indication information is a synchronization sequence or a first indicator bit used to indicate the supported terminal type; and sending the downlink signal to the terminal.
Abstract:
The present invention provides a synchronization signal receiving method, including: receiving, by a receive end, a synchronization sequence sent by a transmit end, where the synchronization sequence includes a carrier frequency synchronization sequence, the carrier frequency synchronization sequence is zc(m)=e±jπm(m+1+2q)/L, m=0, 1, . . . , L−1, qεZ, L indicates a length of the carrier frequency synchronization sequence, q indicates a parameter of the carrier frequency synchronization sequence, Z indicates an integer set, e±jπm(m+1+2q)/L indicates the (±jπm(m+1+2q)/L)th power of e, and e is a natural constant; and performing, by the receive end, frequency offset estimation according to the received synchronization sequence, to obtain a frequency offset estimation value. With the technical solutions of embodiments of the present invention, accuracy of frequency offset estimation can be improved.