Abstract:
A negative electrode current collector of a lithium metal battery includes a current collector substrate provided with a plurality of pore channels, a lithium dissolving agent filled in each of the pore channels of the current collector substrate, and a locking layer attached to a pore wall of a corresponding pore channel and located between the pore wall and the lithium dissolving agent. The lithium dissolving agent is a liquid or a gel capable of dissolving lithium metal. The locking layer is configured to constrain the lithium dissolving agent to the corresponding pore channel.
Abstract:
Embodiments of the present disclosure provide a cathode active material for a lithium-ion secondary battery, where the cathode active material for a lithium-ion secondary battery includes a silicon-based active substance and a nitrogen-doped carbon material. The silicon-based active substance is encased in the interior of the nitrogen-doped carbon material, and the silicon-based active substance is one or more of a nanoparticle and a nanowire; a micropore is arranged on at least one of the exterior and the interior of the nitrogen-doped carbon material; and a material of the nitrogen-doped carbon material is a nitrogen-doped carbon network. The cathode active material for a lithium-ion secondary battery solves a problem in the prior art that a silicon material, when used as a cathode active material, easily falls from a current collector due to a great volume change and has a low conductivity.
Abstract:
A lithium-ion rechargeable battery negative electrode active material and a preparation method thereof, a lithium-ion rechargeable battery negative electrode plate, and a lithium-ion rechargeable battery are disclosed. The negative electrode active material includes a carbon core and a coating layer formed on a surface of the carbon core, a material of the coating layer includes amorphous carbon and a doping element, and the doping element includes element nitrogen. The lithium-ion rechargeable battery negative electrode active material has the carbon core, and the coating layer that includes the doping element and the amorphous carbon is provided on the surface of the carbon core.
Abstract:
A lithium-ion rechargeable battery negative electrode active material and a preparation method thereof, a lithium-ion rechargeable battery negative electrode plate, and a lithium-ion rechargeable battery are disclosed. The negative electrode active material includes a carbon core and a coating layer formed on a surface of the carbon core, a material of the coating layer includes amorphous carbon and a doping element, and the doping element includes element nitrogen. The lithium-ion rechargeable battery negative electrode active material has the carbon core, and the coating layer that includes the doping element and the amorphous carbon is provided on the surface of the carbon core.
Abstract:
A lithium-ion rechargeable battery negative electrode active material and a preparation method thereof, a lithium-ion rechargeable battery negative electrode plate, and a lithium-ion rechargeable battery are disclosed. The negative electrode active material includes a carbon core and a coating layer formed on a surface of the carbon core, a material of the coating layer includes amorphous carbon and a doping element, and the doping element includes element nitrogen. The lithium-ion rechargeable battery negative electrode active material has the carbon core, and the coating layer that includes the doping element and the amorphous carbon is provided on the surface of the carbon core.
Abstract:
A composite negative electrode material, a method for preparing the composite negative electrode material, a negative electrode plate of a lithium ion secondary battery containing the composite negative electrode material, and a lithium ion secondary battery containing a negative electrode active material of the lithium ion secondary battery, where the composite negative electrode material includes a carbon core and a carbon coating layer, where the carbon coating layer is a carbon layer that coats a surface of the carbon core, and both the carbon core and the carbon coating layer include a doping element, where the doping element is at least one of element N, P, B, S, O, F, Cl, or H.
Abstract:
An organic solar cell device is provided, including a first electrode, a photoactive layer, a hole transport layer, and a second electrode that are stacked successively. The photoactive layer includes an electron receptor material and an electron donor material. The electron receptor material is graphene nitride that forms a foamy film on the first electrode and has a three-dimensional network structure. A part of the electron donor material permeates into the graphene nitride, and a part of the electron donor material is enriched on a side of the hole transport layer to form an electron donor enriched layer.
Abstract:
A composite negative electrode material, a method for preparing the composite negative electrode material, a negative electrode plate of a lithium ion secondary battery containing the composite negative electrode material, and a lithium ion secondary battery containing a negative electrode active material of the lithium ion secondary battery, where the composite negative electrode material includes a carbon core and a carbon coating layer, where the carbon coating layer is a carbon layer that coats a surface of the carbon core, and both the carbon core and the carbon coating layer include a doping element, where the doping element is at least one of element N, P, B, S, O, F, Cl, or H.
Abstract:
A lithium-ion rechargeable battery negative electrode active material and a preparation method thereof, a lithium-ion rechargeable battery negative electrode plate, and a lithium-ion rechargeable battery are disclosed. The negative electrode active material includes a carbon core and a coating layer formed on a surface of the carbon core, a material of the coating layer includes amorphous carbon and a doping element, and the doping element includes element nitrogen. The lithium-ion rechargeable battery negative electrode active material has the carbon core, and the coating layer that includes the doping element and the amorphous carbon is provided on the surface of the carbon core.
Abstract:
A lithium-ion battery conductive bonding agent, including graphene and a first bonding agent grafted on a surface of the graphene, a production method for the conductive bonding agent, and an electrode plate and a lithium-ion battery that contain the conductive bonding agent, where the first bonding agent includes at least one of polyvinyl alcohol, sodium carboxymethyl cellulose, polyethylene glycol, polylactic acid, polymethyl methacrylate, polystyrene, polyvinylidene fluoride, a hexafluoropropylene polymer, styrene-butadiene rubber, sodium alginate, starch, cyclodextrin, or polysaccharide. The lithium-ion battery conductive bonding agent has good conductive performance and bonding performance and specific strength, improving mechanical strength of a whole electrode plate. The conductive bonding agent integrates a bonding agent and a conductive agent. This can improve content of active substance in the electrode plate, and further increase an energy density of an electrochemical cell.