Controllable and reconfigurable magnetization system and method for magnetic soft-bodied robot

    公开(公告)号:US11705263B2

    公开(公告)日:2023-07-18

    申请号:US17595633

    申请日:2021-05-08

    IPC分类号: H01F13/00

    CPC分类号: H01F13/00

    摘要: The present invention belongs to the technical field of magnetically controlled soft-bodied robots, and more specifically, relates to a controllable and reconfigurable magnetization system and method for a magnetic soft-bodied robot. The system comprises a pulse power supply module, magnetizing coil units axisymmetrically arranged up and down, and a magnetic soft-bodied robot placed between the upper and lower magnetizing units. By means of changing the relative current flow direction of the upper and lower magnetizing coil modules, radial and vertical magnetic fields can be generated between the magnetizing coils arranged oppositely without any mechanical movement, so that the internal magnetization direction of the magnetic soft-bodied robot can be configured simply and flexibly. The present invention realizes for the first time the particle magnetization and synchronization of bidirectional orientations, and decouples the material preparation process of the magnetic soft-bodied robot from the magnetization process, so that the entire manufacturing process is very simple. Moreover, the internal magnetization distribution is reconfigurable, which provides a completely new technical approach for realizing multifunctional magnetic soft-bodied robots.

    Electromagnetic manufacturing method and forming device of mesoscale plate

    公开(公告)号:US11471926B2

    公开(公告)日:2022-10-18

    申请号:US17283956

    申请日:2020-06-13

    摘要: Electromagnetic manufacturing method and forming device of mesoscale plate are provided. The manufacturing method includes: oppositely and parallelly disposing a first workpiece to be formed on top of a mold, side-press restraining two ends of the first workpiece, and disposing a deceleration block on two sides of the mold; controlling the first workpiece to tend toward the mold and to be deformed under the drive of uniform electromagnetic force; and colliding a middle area of the first workpiece firstly with the mold under the drive of uniform electromagnetic force, and driving the speed of the middle area of the first workpiece to decelerate to zero. When an area close to the two ends collides with the deceleration block and until the speed of all areas of first workpiece decelerates to zero, forming is completed. Shaping is tending further toward the mold through electromagnetic force until completely fitted to the mold.