摘要:
A membrane electrode assembly and a method of manufacturing an electricity generating assembly include a pair of gas diffusion layers disposed on both surfaces of the membrane electrode assembly. Coupling agents are applied on surfaces of the gas diffusion layers, modifying surfaces of the gas diffusion layers. A coupling agent-friendly adhesive is applied to the surfaces of the gas diffusion layers to which the coupling agents are applied, forming adhesion layers on surfaces of the gas diffusion layers. The gas diffusion layers are stacked on the surfaces of the membrane electrode assembly, causing the adhesion layers to come into contact with the first and second surfaces of the membrane electrode assembly.
摘要:
A fuel cell and a method for producing the same are provided. The fuel cell includes a membrane electrode assembly and a gas diffusion layer that is disposed at each of opposite surfaces of the membrane electrode assembly, and includes a plurality of compressed parts that are formed by pressure at positions spaced out at predetermined intervals on the gas diffusion layer. The fuel cell further includes a separator that is in contact with an outer surface of the gas diffusion layer, and has a plurality of land parts that protrude toward the gas diffusion layer, and a plurality of channel parts that form flow paths between the land parts. The land parts respectively protrude toward the compressed parts of the gas diffusion layer to come in contact with the compressed parts.
摘要:
The present invention provides a fuel cell stack with enhanced freeze-thaw durability. In particular, the fuel cell stack includes a gas diffusion layer between a membrane-electrode assembly and a bipolar plate. The gas diffusion layer has a structure that reduces contact resistance in a fuel cell and is cut at a certain angle such that the machine direction (high stiffness direction) of GDL roll is not in parallel with the major flow field direction of the bipolar plate, resulting in an increased GDL stiffness in a width direction perpendicular to a major flow field direction of a bipolar plate.
摘要:
Disclosed are an electrode for a membrane-electrode assembly, a method of manufacturing the same and a membrane-electrode assembly using the same. The electrode may include the pores and pore density around a catalyst contained in the electrode may be selectively increased using a thermally decomposable chemical blowing agent, thereby improving mass transfer through the catalyst.
摘要:
Disclosed herein is a method of manufacturing a support for a catalyst of a fuel cell. The method may include preparing an admixture including a carbon material and a cerium precursor into a reactor, providing the admixture in a reactor, raising a temperature of the reactor to a predetermined temperature, and introducing water vapor into the reactor to perform an activation reaction of the carbon material.
摘要:
Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).
摘要:
A fuel cell and a method for producing the same are provided. The fuel cell includes a membrane electrode assembly and a gas diffusion layer that is disposed at each of opposite surfaces of the membrane electrode assembly, and includes a plurality of compressed parts that are formed by pressure at positions spaced out at predetermined intervals on the gas diffusion layer. The fuel cell further includes a separator that is in contact with an outer surface of the gas diffusion layer, and has a plurality of land parts that protrude toward the gas diffusion layer, and a plurality of channel parts that form flow paths between the land parts. The land parts respectively protrude toward the compressed parts of the gas diffusion layer to come in contact with the compressed parts.
摘要:
Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).
摘要:
The present invention provides a local hydrophilic gas diffusion layer configured to enhance the water removal performance of a fuel cell For this purpose, the present invention provides a gas diffusion layer in which a region under each of a pair of lands, which receives a clamping pressure of the fuel cell stack, is subjected to local hydrophilic treatment by a simple process, thereby enhancing the water removal performance of the fuel cell stack. In particular, the local hydrophilic gas diffusion layer has a first region under each land of the separator which receives the clamping pressure; and a second region under the gas channel of the separator, wherein the first region is subjected to hydrophilic treatment.
摘要:
Disclosed herein is a method of manufacturing a support for a catalyst of a fuel cell. The method may include preparing an admixture including a carbon material and a cerium precursor into a reactor, providing the admixture in a reactor, raising a temperature of the reactor to a predetermined temperature, and introducing water vapor into the reactor to perform an activation reaction of the carbon material.