Abstract:
The present invention discloses a channel estimation method and device in an orthogonal frequency division multiplexing system. The method includes steps of: A. grouping physical resource blocks in the bandwidth of the orthogonal frequency division multiplexing system; B. extracting at least one group from groups for channel estimation to acquire a channel coefficient, wherein the number of the extracted groups is less than the total number of groups; C. completing the MIMO demodulation by using the acquired channel coefficient; D. judging whether the channel estimation on the grouping has been completed, if yes, ending, otherwise, returning to step B. The device divides the physical resource blocks (PRB) in the bandwidth of the orthogonal frequency division multiplexing system into several groups and then carries out channel estimation processing on each group of resource blocks successively and individually, so as to achieve memory sharing and save storage amount.
Abstract:
An information detection method and apparatus for a High Speed Downlink Shared Control Channel (HS-SCCH) are provided by the present disclosure, implementing the detection of HS-SCCH part1 with low false alarm probability and low false dismissal probability under the arbitrary combination of User Identifiers (UEID). The method is that: rate de-matching the front detection signal of each HS-SCCH part1 in the terminal HS-SCCH monitor set, obtaining the corresponding rate de-matched information; removing the user mask for the rate de-matched information of each HS-SCCH monitor channel; Viterbi decoding each rate de-matched information of which the user mask is removed, obtaining Viterbi-decoding 0 state accumulated metric of each HS-SCCH in HS-SCCH monitor set, and summing the absolute value of the soft information of each HS-SCCH monitor channel respectively, with the soft information being obtained by removing the user mask; according to the Viterbi 0 state accumulated metric of each HS-SCCH and the sum of absolute values of the corresponding soft information, is obtaining determination variables of each HS-SCCH; selecting the maximum from the determination variables of HS-SCCH, comparing the maximum with the preset threshold, and determining whether the HS-SCCH of this user is detected.
Abstract:
The present invention discloses a channel estimation method and device in an orthogonal frequency division multiplexing system. The method includes steps of: A. grouping physical resource blocks in the bandwidth of the orthogonal frequency division multiplexing system; B. extracting at least one group from groups for channel estimation to acquire a channel coefficient, wherein the number of the extracted groups is less than the total number of groups; C. completing the MIMO demodulation by using the acquired channel coefficient; D. judging whether the channel estimation on the grouping has been completed, if yes, ending, otherwise, returning to step B. The device divides the physical resource blocks (PRB) in the bandwidth of the orthogonal frequency division multiplexing system into several groups and then carries out channel estimation processing on each group of resource blocks successively and individually, so as to achieve memory sharing and save storage amount.
Abstract:
An information detection method and apparatus for a High Speed Downlink Shared Control Channel (HS-SCCH) are provided by the present disclosure, implementing the detection of HS-SCCH part1 with low false alarm probability and low false dismissal probability under the arbitrary combination of User Identifiers (UEID). The method is that: rate de-matching the front detection signal of each HS-SCCH part1 in the terminal HS-SCCH monitor set, obtaining the corresponding rate de-matched information; removing the user mask for the rate de-matched information of each HS-SCCH monitor channel; Viterbi decoding each rate de-matched information of which the user mask is removed, obtaining Viterbi-decoding 0 state accumulated metric of each HS-SCCH in HS-SCCH monitor set, and summing the absolute value of the soft information of each HS-SCCH monitor channel respectively, with the soft information being obtained by removing the user mask; according to the Viterbi 0 state accumulated metric of each HS-SCCH and the sum of absolute values of the corresponding soft information, obtaining determination variables of each HS-SCCH; selecting the maximum from the determination variables of HS-SCCH, comparing the maximum with the preset threshold, and determining whether the HS-SCCH of this user is detected.