摘要:
Some methods are directed to manufacturing charge trap-type non-volatile memory devices. An isolation layer pattern can be formed that extends in a first direction in a substrate. A recess unit is formed in the substrate by recessing an exposed surface of the substrate adjacent to the isolation layer pattern. A tunnel insulating layer and a charge trap layer are sequentially formed on the substrate. The tunnel insulating layer and the charge trap layer are patterned to form an isolated island-shaped tunnel insulating layer pattern and an isolated island-shaped charge trap layer pattern by etching defined regions of the substrate, the isolation layer pattern, the tunnel insulating layer, and the charge trap layer until a top surface of the charge trap layer that is disposed on a bottom surface of the recess unit is aligned with a top surface of the isolation layer pattern. A blocking insulating layer is formed that covers the charge trap layer pattern, the isolation layer pattern, and a defined region of the substrate interposed between the charge trap patterns. A gate electrode pattern is formed on the blocking insulating layer to face the charge trap layer pattern. This manufacturing process may reduce charge spreading between unit memory cells and/or may prevent/avoid reduction in the breakdown voltage of the blocking insulating layer.
摘要:
Some methods are directed to manufacturing charge trap-type non-volatile memory devices. An isolation layer pattern can be formed that extends in a first direction in a substrate. A recess unit is formed in the substrate by recessing an exposed surface of the substrate adjacent to the isolation layer pattern. A tunnel insulating layer and a charge trap layer are sequentially formed on the substrate. The tunnel insulating layer and the charge trap layer are patterned to form an isolated island-shaped tunnel insulating layer pattern and an isolated island-shaped charge trap layer pattern by etching defined regions of the substrate, the isolation layer pattern, the tunnel insulating layer, and the charge trap layer until a top surface of the charge trap layer that is disposed on a bottom surface of the recess unit is aligned with a top surface of the isolation layer pattern. A blocking insulating layer is formed that covers the charge trap layer pattern, the isolation layer pattern, and a defined region of the substrate interposed between the charge trap patterns. A gate electrode pattern is formed on the blocking insulating layer to face the charge trap layer pattern. This manufacturing process may reduce charge spreading between unit memory cells and/or may prevent/avoid reduction in the breakdown voltage of the blocking insulating layer.
摘要:
A non-volatile semiconductor device includes a memory cell in a first area of a substrate, a low voltage transistor in a second area of the substrate, and a high voltage transistor in a third area of the substrate. The memory cell includes a tunnel insulation layer formed on the substrate, a charge trapping layer pattern formed on the tunnel insulation layer in the first area of the substrate, a blocking layer pattern formed on the charge trapping layer pattern and a control gate formed on the blocking layer pattern. The control gate has a width substantially smaller than a width of the blocking layer pattern and the width of the control gate is substantially smaller than a width of the charge trapping layer pattern. In addition, an offset is formed between the control gate and the blocking layer pattern such that a spacer is not formed on a sidewall of the control gate.
摘要:
A non-volatile semiconductor device includes a memory cell in a first area of a substrate, a low voltage transistor in a second area of the substrate, and a high voltage transistor in a third area of the substrate. The memory cell includes a tunnel insulation layer formed on the substrate, a charge trapping layer pattern formed on the tunnel insulation layer in the first area of the substrate, a blocking layer pattern formed on the charge trapping layer pattern and a control gate formed on the blocking layer pattern. The control gate has a width substantially smaller than a width of the blocking layer pattern and the width of the control gate is substantially smaller than a width of the charge trapping layer pattern. In addition, an offset is formed between the control gate and the blocking layer pattern such that a spacer is not formed on a sidewall of the control gate.