摘要:
According to one embodiment, an apparatus includes a near field transducer comprising a conductive metal film having a main body and a ridge extending from the main body and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers. In another embodiment, a method includes forming a near field transducer structure and removing a portion of the near field transducer structure. The method also includes forming a cladding layer adjacent a remaining portion of the near field transducer structure, wherein a portion of the cladding layer extends along the remaining portion of the near field transducer structure and forming a core layer above the cladding layer. Other apparatuses and methods are also included in the invention.
摘要:
An apparatus according to one embodiment includes a near field transducer comprising a conductive metal film; and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers, wherein a longitudinal axis of the optical waveguide is substantially perpendicular to an air bearing surface.
摘要:
An apparatus according to one embodiment includes a near field transducer comprising a conductive metal film; and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers, wherein a longitudinal axis of the optical waveguide is substantially perpendicular to an air bearing surface.
摘要:
According to one embodiment, an apparatus includes a near field transducer comprising a conductive metal film having a main body and a ridge extending from the main body and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers. In another embodiment, a method includes forming a near field transducer structure and removing a portion of the near field transducer structure. The method also includes forming a cladding layer adjacent a remaining portion of the near field transducer structure, wherein a portion of the cladding layer extends along the remaining portion of the near field transducer structure and forming a core layer above the cladding layer. Other apparatuses and methods are also included in the invention.
摘要:
A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
摘要:
A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
摘要:
A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
摘要:
A write head structure for use with thermally assisted recording is disclosed. Improved heat sinking is provided for removing thermal energy created by a ridge aperture near field light transducer. Metal films conduct heat away from the region near the ridge aperture to the high pressure air film at the ABS between the head and media. This heat is further dissipated by the media. The metal films have varying thickness to improve lateral conductivity and may be composed of Au combined with a harder metal such as Ru to improve wear characteristics at the ABS.
摘要:
A write head structure for use with thermally assisted recording is disclosed. Improved heat sinking is provided for removing thermal energy created by a ridge aperture near field light transducer. Metal films conduct heat away from the region near the ridge aperture to the high pressure air film at the ABS between the head and media. This heat is further dissipated by the media. The metal films have varying thickness to improve lateral conductivity and may be composed of Au combined with a harder metal such as Ru to improve wear characteristics at the ABS.
摘要:
A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.