Abstract:
The sublimation capability of a porous metal plate used in a sublimator is maintained by heating the porous metal plate at an elevated temperature in a flowing stream of oxygen for an extended period of time to form an oxidized surface. A short chain molecule, such as citric acid, is attached to the oxidized surface having multiple functional carboxylate groups and no hydrophobic tail.
Abstract:
A method of remediating a water-based fluid includes the steps of providing a container providing a fluid cavity and organic, inorganic and biological remediation media within the cavity. The container is tubular and provides a linear flow direction, organic, inorganic and biological remediation media arranged in the cavity and configured to permit a water-based fluid within the cavity to simultaneously flow through the media. The organic, the inorganic and the biological remediation media are respectively configured to remove organic, inorganic and microbiological constituents. The organic, inorganic and biological remediation media are arranged within the cavity along the linear flow direction. Multiple cartridges are arranged within the cavity and spaced apart from one another. A predetermined flow rate of the water-based fluid through the cavity is set and it concurrently removes organic, inorganic and iodine-based biocide contaminants from the fluid within the cavity.
Abstract:
The sublimation capability of a porous metal plate used in a sublimator is maintained by heating the porous metal plate at an elevated temperature in a flowing stream of oxygen for an extended period of time to form an oxidized surface. A short chain molecule, such as citric acid, is attached to the oxidized surface having multiple functional carboxylate groups and no hydrophobic tail.
Abstract:
A method of remediating a water-based fluid includes the steps of providing a container providing a fluid cavity and organic, inorganic and biological remediation media within the cavity. The container is tubular and provides a linear flow direction, organic, inorganic and biological remediation media arranged in the cavity and configured to permit a water-based fluid within the cavity to simultaneously flow through the media. The organic, the inorganic and the biological remediation media are respectively configured to remove organic, inorganic and microbiological constituents. The organic, inorganic and biological remediation media are arranged within the cavity along the linear flow direction. Multiple cartridges are arranged within the cavity and spaced apart from one another. A predetermined flow rate of the water-based fluid through the cavity is set and it concurrently removes organic, inorganic and iodine-based biocide contaminants from the fluid within the cavity.