摘要:
Disclosed herein is a middle- or large-sized battery pack having a plurality of battery cells, which can be charged and discharged, stacked one on another with high density and electrically connected with each other. When the battery cells swell due to abnormal operation of the battery pack or degradation of the battery pack caused by the charge and discharge of the battery cells for a long period of time, stress is concentrated on a predetermined region of the battery pack due to the change of thickness of the swelling battery cells, whereby the physical change of the battery pack is caused, and the disconnection of an electrically connecting member of the battery pack is mechanically accomplished by the physical change of the battery pack. Consequently, the battery pack according to the present invention provides high safety.
摘要:
Disclosed herein are an equal distribution type connecting member for connecting two or more devices to an external circuit, the connection member including a first connection circuit connected to a connection point of the external circuit, and second connection circuits sequentially connected to the first connection circuit, the second connection circuits being constructed in a structure in which the sectional areas of the second connection circuits are increased and/or the lengths of the second connection circuits are decreased with the increase of the connection distance between the connection point of the external circuit and connection points of the devices, thereby equalizing internal resistances between the connection point of the external circuit and the connection points of the devices, and a middle- or large-sized battery pack including the same. The equal distribution type connecting member according to the present invention is capable of reducing the difference in internal resistances of the circuits, thereby increasing the overall life span of the battery pack. Also, the uniform charging and discharging efficiency of battery modules or battery cells is acquired, and therefore, it is possible to manufacture battery modules having optimized performance and a middle- or large-sized battery pack including the same.
摘要:
Disclosed herein are an equal distribution type connecting member for connecting two or more devices to an external circuit, the connection member including a first connection circuit connected to a connection point of the external circuit, and second connection circuits sequentially connected to the first connection circuit, the second connection circuits being constructed in a structure in which the sectional areas of the second connection circuits are increased and/or the lengths of the second connection circuits are decreased with the increase of the connection distance between the connection point of the external circuit and connection points of the devices, thereby equalizing internal resistances between the connection point of the external circuit and the connection points of the devices, and a middle- or large-sized battery pack including the same. The equal distribution type connecting member according to the present invention is capable of reducing the difference in internal resistances of the circuits, thereby increasing the overall life span of the battery pack. Also, the uniform charging and discharging efficiency of battery modules or battery cells is acquired, and therefore, it is possible to manufacture battery modules having optimized performance and a middle- or large-sized battery pack including the same.
摘要:
Disclosed herein is a process for preparation of a secondary battery module. The process includes forming coupling through-holes having specific shapes at plate-shaped electrode terminals of a plurality of unit cells, stacking the unit cells one on another, and inserting coupling members through the coupling through-holes to couple the unit cells with each other. Consequently, the secure coupling and the electrical connection between the unit cells is accomplished without using additional members, such as cartridges, and therefore, a compact battery module having high coupling force is prepared.
摘要:
Disclosed herein is a terminal-linking member of a high-output, large-capacity secondary battery module or pack having a plurality of unit cells stacked one on another and electrically connected with each other. The terminal-linking member includes an insulating member mounted between electrode terminals of the neighboring unit cells for accomplishing the electrical insulation between the electrode terminals, the insulating member being coupled to the electrode terminals, and a connecting member coupled to the insulating member for electrically connecting the electrode terminals of the unit cells coupled to the insulating member in series or in parallel with each other.
摘要:
A heat dissipation structure connected to switching elements that control charge and discharge of a secondary battery module, the heat dissipation structure includes a pair of side frames to which charge-purpose switching elements and discharge-purpose switching elements are coupled, respectively, a main frame for interconnecting the side frames and a plurality of heat dissipation ribs protruding upward from the main frame while the heat dissipation ribs are arranged in parallel with each other, whereby the heat dissipation structure is constructed in a rectangular compact shape.
摘要:
Disclosed herein is a sensing board assembly mounted in a high-output, large-capacity secondary battery module, which has a plurality of secondary unit cells mounted therein such that the secondary unit cells are electrically connected with each other, for sensing the voltage and current of the unit cells. The sensing board assembly comprises connecting members for electrically connecting electrode terminals of the unit cells with each other, each of the connecting members including a connecting extension part, by which the connecting members are connected to a printed circuit board, and the printed circuit board having drilled-holes, through which the connecting extension parts of the connecting members are securely inserted, and circuits connected to the drilled-holes.
摘要:
Disclosed herein is a high-output, large-capacity secondary battery module, having a plurality of unit cells electrically connected to each other, for charging and discharging electricity. A plurality of unit cells are stacked one on another and mounted on a plate, preferably, between an upper case and a lower case, which are separated from each other, circuit units are continuously mounted at the side surfaces of the module for sensing the voltage, the current, and the temperature of the battery, controlling the battery, and interrupting electricity when overcurrent is generated, whereby the secondary battery module is constructed in a compact structure, design of the battery module is easily changed depending upon electrical capacity and output, and components of the battery module are stably mounted.
摘要:
Disclosed herein is a separation-type connecting member, which electrically connects electrode terminals of unit cells. The connecting member comprises two or more separated connecting bodies, which are connected to the corresponding electrode terminals during the assembly of a secondary battery module, and which are electrically connected with each other by additional conductive members to complete the battery module. The present invention also provides a method of improving the performance of a battery module that is capable of connecting unit cells in parallel with each other to level the voltage of the unit cells while the battery module is manufactured using the connecting member, specifically, before the unit cells are connected in series with each other, or while the battery module is used, thereby minimizing the voltage difference between the unit cells.
摘要:
Disclosed herein is a secondary battery having a mechanical connection sensor, as a safety device, fixed to the outer surface of a prismatic or pouch-shaped battery cell while the mechanical connection sensor is set to OFF. The mechanical connection sensor is connected in series with a resistor having a predetermined resistance value and with a cathode and an anode of the battery cell. When the battery cell swells to a critical value or more due to the abnormal operation of the battery cell, the mechanical connection sensor is turned ON, and therefore, the mechanical connection sensor conducts with the result that the electrical energy of the battery cell is consumed at the resistor. In the secondary battery having the safety device according to the present invention, when the battery swells due to the abnormal response of the battery, energy accumulated in the battery is forcibly consumed, unlike a conventional battery that merely intercepts the current. As a result, the continuous occurrence of the abnormal response is fundamentally prevented, and therefore, more rapid process is possible with excellent pressure sensitivity. Consequently, the safety of the battery is improved.