摘要:
An electronically commutated motor has substantially constant air gap energy to reduce cogging. A rotatable assembly has permanent magnet elements which rotate about an axis of rotation. The elements are oriented with respect to said axis of rotation to provide a magnetic field with lines of flux along a plane forming a skew angle of s.sub.1 mechanical degrees with respect to the axis of rotation, wherein s.sub.1 is not equal to zero. The elements may be provided with an unmagnetized portion referred to as a phantom skew. A stationary assembly is in magnetic coupling relation with the permanent magnet elements of the rotatable assembly and has t spaced teeth with adjacent teeth defining a slot therebetween, wherein t is positive integer. Each tooth has a surface adjacent the rotatable assembly having one or more notches forming a skew angle of s.sub.2 mechanical degrees with the axis of rotation. Each tooth has winding stages adapted for commutation in at least one preselected sequence. The skewed magnetic field, skewed notches and phantom magnetic skews reduce cogging between the rotatable assembly and the stationary assembly as the rotatable assembly rotates, while maintaining a back EMF waveform having a maximized flat top width.
摘要:
An electronically commutated motor is disclosed including a stationary assembly having a plurality of winding stages adapted for commutation in at least one preselected sequence and a rotatable assembly having a plurality of permanent magnet elements in magnetic coupling relation with the stationary assembly. The permanent magnet elements are adapated to sequentially apply a magnetic field having a substantially constantly increasing magnetic flux to each respective winding stage during the period that current is supplied to the respective winding stage as the rotatable assembly rotates. The permanent magnet elements are also adapted to sequentially apply a magnetic field having a substantially constantly decreasing magnetic flux to each respective winding stage during a period that current is not supplied to the respective winding stage as the rotatable assembly rotates. A rotatable assembly, a method of operating the motor, and a method of rotating the rotatable assembly are also disclosed.
摘要:
A method for equalizing fuel injector flows among a plurality of fuel injectors in an internal combustion engine including the steps of a) characterizing the electrical and/or mechanical performance of each fuel injector; b) imprinting characterization data on each fuel injector; c) reading the imprinted data into a control computer, preferably at the time of engine assembly or sub-assembly; and d) using the characterization data in an algorithm to adjust at least one electrical parameter such as hold current, peak current, and boost time for each fuel injector in an assembled engine during each fuel injection cycle.
摘要:
A system and method for controlling an injection time of a fuel injector. The system includes a drive circuit configured to output a drive signal having a pulse width, wherein the injection time is influenced by the pulse width and a closing electrical decay of the fuel injector. A controller is configured to determine the closing electrical decay of the fuel injector and adapt the pulse width based on the closing electrical decay to control the injection time. The closing electrical decay includes a closing response. The controller determines the closing response based on an injector signal, such as a coil voltage of the fuel injector. By determining the closing response, the pulse width can be adjusted to compensate for fuel injector part-to-part variability, fuel injector wear, variations in fuel pressure received by the fuel injector, dirt in the fuel injector, and the like.
摘要:
A method for equalizing fuel injector flows among a plurality of fuel injectors in an internal combustion engine including the steps of a) characterizing the electrical and/or mechanical performance of each fuel injector; b) imprinting characterization data on each fuel injector; c) reading the imprinted data into a control computer, preferably at the time of engine assembly or sub-assembly; and d) using the characterization data in an algorithm to adjust at least one electrical parameter such as hold current, peak current, and boost time for each fuel injector in an assembled engine during each fuel injection cycle.
摘要:
A motor has a stationary assembly including three windings in magnetic coupling relation to a rotatable assembly, the position of which is sensed by a position sensor. A converter, adapted to be coupled to a power supply, energizes each of the windings with a voltage. The converter is responsive to the angular position and speed of the rotatable assembly for selectively energizing each of the windings according to a preselected sequence. The converter energizes each winding with the voltage throughout a commutation period when a back EMF induced in such winding has a polarity opposite to a polarity of the voltage energizing such winding, the commutation period for each winding overlapping the commutation period for another winding. Alternatively, the converter energizes each winding with the voltage throughout a commutation period of 180 electrical degrees, the commutation period for each winding overlapping the commutation period for another winding. As a result, torque ripple in the rotation of the rotatable assembly is reduced.