Abstract:
A brighter, more uniform deposit of electroless silver is achieved over a wider temperature range by employing as a reducer a compound represented by the general formula:R.sup.2 --(CHR.sup.1).sub.n --CH.sub.2 OHwhere n is two (2) to seven (7), R.sup.2 is represented by the formula COOH or CH.sub.2 R.sup.1, each R.sup.1 group is independently selected from the class consisting of OH, NH.sub.2, NHCH.sub.3, NHC.sub.2 H.sub.5 or NHC.sub.3 H.sub.7 and at least one of the R.sup.1 groups is NH.sub.2, NHCH.sub.3, NHC.sub.2 H.sub.5 or NHC.sub.3 H.sub.7.Preferred reducers are N-methylglucamine, d-glucamine and glucosaminic acid.
Abstract:
The present application relates to a method for enhancing metal corrosion resistance of a metal deposited on a substrate, the method comprises contacting the metal coated substrate with a treating composition comprising a film forming organic component which treating composition forms a hydrophobic film on the metal coated substrate with a thickness of less than 1 μm. Furthermore, the present application relates to a method for making a mirror comprising a substrate having a metal coated thereon, the method comprises contacting the metal coated substrate with a treating composition comprising a film forming organic component which treating composition forms a hydrophobic film on the metal coated substrate with a thickness of less than 1 μm. Preferably, the film forming organic component is selected from the group consisting of an aromatic triazole compound and a silicone resin. In addition the present application relates to the products obtainable by these methods.
Abstract:
The present invention refers to a method of making an copper-free article having a metal coating deposited on a substrate comprising: providing a substrate; contacting a surface of said substrate with a solution comprising: at least one metal ion selected from the group consisting of Ce, Pr, Nd, Eu, Er, Ga, W, Al, Mn, Mo, Sb, Te, La, Sm or their mixtures; and applying a metal coating on said surface of said substrate. In another embodiment the present invention refers to a method of making a metal coated article: providing a substrate; contacting a surface of said substrate with a solution comprising a mixture of more than one metal ion selected from the same group as listed above; or contacting said surface of said substrate with more than one solution comprising in each solution at least one metal ion selected from the same group; and applying a metal coating on said surface of said substrate. Moreover, the present invention refers to a method of making a metal coated article comprising: providing a substrate; contacting a surface of said substrate with a solution comprising a Bi metal ion, and applying a metal coating on said activated surface of said substrate. Furthermore an article obtainable by any of said methods, is claimed.
Abstract:
The present invention refers to a method of making an copper-free article having a metal coating deposited on a substrate comprising: providing a substrate; contacting a surface of said substrate with a solution comprising: at least one metal ion selected from the group consisting of Ce, Pr, Nd, Eu, Er, Ga, W, Al, Mn, Mo, Sb, Te, La, Sm or their mixtures; and applying a metal coating on said surface of said substrate. In another embodiment the present invention refers to a method of making a metal coated article: providing a substrate; contacting a surface of said substrate with a solution comprising a mixture of more than one metal ion selected from the same group as listed above; or contacting said surface of said substrate with more than one solution comprising in each solution at least one metal ion selected from the same group; and applying a metal coating on said surface of said substrate. Moreover, the present invention refers to a method of making a metal coated article comprising: providing a substrate; contacting a surface of said substrate with a solution comprising a Bi metal ion, and applying a metal coating on said activated surface of said substrate. Furthermore an article obtainable by any of said methods, is claimed.
Abstract:
The present application relates to a method for enhancing metal corrosion resistance of a metal deposited on a substrate, the method comprises contacting the metal coated substrate with a treating composition comprising a film forming organic component which treating composition forms a hydrophobic film on the metal coated substrate with a thickness of less than 1 μm. Furthermore, the present application relates to a method for making a mirror comprising a substrate having a metal coated thereon, the method comprises contacting the metal coated substrate with a treating composition comprising a film forming organic component which treating composition forms a hydrophobic film on the metal coated substrate with a thickness of less than 1 μm. Preferably, the film forming organic component is selected from the group consisting of an aromatic triazole compound and a silicone resin. In addition the present application relates to the products obtainable by these methods.