摘要:
A method and system for a single chip integrated Bluetooth and FM transceiver and baseband processor are provided. The single chip may comprise a Bluetooth radio, an FM radio, a processor system, and a peripheral transport unit (PTU). FM data may be received and/or transmitted via the FM radio and Bluetooth data may be received and/or transmitted via the Bluetooth radio. The FM radio may receive radio data system (RDS) data. The PTU may support digital and analog interfaces. A processor in the processor system may time-multiplex processing of FM data and processing of Bluetooth data. The single chip may operate in an FM-only, a Bluetooth-only, and an FM-Bluetooth mode. The single chip may reduce power consumption by disabling portions of the Bluetooth radio during FM-only mode and/or disabling analog circuitry when performing digital processing. Communication between Bluetooth and FM channels may be enabled via the single chip.
摘要:
Certain aspects of determining a signal quality metric in event of a CRC false positive may comprise measuring an amplitude and/or phase of at least a portion of a phase shift keyed section of a frame. The measured amplitude and/or phase may be checked to determine if it lies within a range of a reference amplitude and/or phase respectively. An amplitude and/or phase counter may be incremented if the measured amplitude and/or phase lies outside the range of the reference amplitude and/or phase respectively. A confidence level value of a cyclic redundancy check (CRC) for at least a portion of the phase shift keyed section of the frame may be determined based on a determined value of the incremented amplitude and/or phase counter.
摘要:
Methods and systems for processing an RF signal are disclosed herein. Aspects of the method may comprise utilizing a single input CORDIC and a single output CORDIC for synchronizing and demodulating a received signal, wherein the received signal may comprise one or more bit rates. The received signal may comprise a one megabit per second (Mbps) signal. The single input CORDIC may be configured to operate in a rotating mode and the single output CORDIC may be configured to operate in a rotating mode and/or an arctangent (ARCTAN) mode. A rotated output of the single input CORDIC may be correlated with a phase shift keying (PSK) synchronization (sync) word and a portion of the correlated rotated output of the single input CORDIC may be buffered.
摘要:
Methods and systems for processing an RF signal are disclosed herein. Aspects of the method may comprise utilizing a single input CORDIC and a single output CORDIC for synchronizing and demodulating a received signal, wherein the received signal may comprise one or more bit rates. The received signal may comprise a one megabit per second (Mbps) signal. The single input CORDIC may be configured to operate in a rotating mode and the single output CORDIC may be configured to operate in a rotating mode and/or an arctangent (ARCTAN) mode. A rotated output of the single input CORDIC may be correlated with a phase shift keying (PSK) synchronization (sync) word and a portion of the correlated rotated output of the single input CORDIC may be buffered.
摘要:
In RF transceivers, a method and system for using phase shift key (PSK) sync word for fine tuning frequency adjustment are provided. One aspect of the invention provides for adjusting a local oscillator frequency in a radio frequency (RF) receiver when a residual DC offset remains after a coarse frequency offset adjustment if performed. The fine adjustment may be necessary because of the synchronization required with a PSK-based modulated portion of a Bluetooth packet. A residual phase shift detected in a sync sequence portion of the Bluetooth packet may be utilized to determine a residual or fine frequency adjustment. This approach may allow an RF receiver to operate, in some instances, without the need for an equalizer. In this regard, the power consumed by the RF receiver may be minimized and/or the overall cost of the RF receiver may be reduced.
摘要:
In a radio comprising a transmitter and a receiver, transmission and reception of signals may be controlled based on received signal strength measurements from a signal strength indicator module and transmitted signal strength measurements from the signal strength indicator module. For the transmitted signal strength measurements, the shared signal strength indicator module may measure signal strength of a signal output by a power amplifier. For the received signal strength measurements, the shared signal strength indicator module may measure signal strength of a received signal. A capacitance coupled to an output of the power amplifier may be configured based on a frequency of the signal output by the power amplifier. A gain of the power amplifier may be controlled based on the transmitted signal strength measurements. For the transmitted signal strength measurements, an analog-to-digital converter may process the signal output by the power amplifier.
摘要:
A method for frequency selection in a wireless communication system, includes performing in a wireless device, receiving at least one signal at a current frequency; processing at least one data packet received via the received at least one signal to determine the presence of bit errors; characterizing the received at least one signal received at the current frequency based on the processing of the at least one data packet; classifying the current frequency based on at least the characterization of the received at least one signal; and selecting the current frequency based on the classification. At least one signal strength measurement may be performed on the received at least one signal, and the processing of the at least one data packet may be performed within a current channel classification update interval.
摘要:
Various aspects of a method and system from signal quality measurement based on mean phase error magnitude of a signal are presented. Aspects of the system may comprise circuitry that receives a time phase corrected Bluetooth signal via an RF channel. The circuitry may generate a phase error signal based on the received time phase corrected Bluetooth signal, and generate a mean phase error signal based on the generated phase error signal. A signal to noise ratio (SNR) may be derived based on the generated mean phase error signal, and a data rate may be selected based on the derived SNR.
摘要:
In a radio comprising a transmitter and a receiver, transmission and reception of signals may be controlled based on received signal strength measurements from a signal strength indicator module and transmitted signal strength measurements from the signal strength indicator module. For the transmitted signal strength measurements, the shared signal strength indicator module may measure signal strength of a signal output by a power amplifier. For the received signal strength measurements, the shared signal strength indicator module may measure signal strength of a received signal. A capacitance coupled to an output of the power amplifier may be configured based on a frequency of the signal output by the power amplifier. A gain of the power amplifier may be controlled based on the transmitted signal strength measurements. For the transmitted signal strength measurements, an analog-to-digital converter may process the signal output by the power amplifier.
摘要:
A method and system is provided processing channel information may include in a mobile FM radio system including an integrated FM radio transmitter and FM radio receiver, dynamically generating a list of local FM channels, ranking local FM channels in the generated list, and selecting one of the ranked local FM channels for use by the FM transmitter based on neighboring channel interference. The FM radio receiver may detect FM channels being transmitted or not being transmitted, detect a pilot signal or a channel transmission pause. A tuning frequency of the FM radio receiver may be adjusted for scanning and detecting the local FM channels based on knowledge of a location of the FM radio receiver, received signal strength indicator (RSSI), dynamically scanning for local FM channel based on received RDS/RDBS data or country code, and/or carrier error of a related FM signal.