摘要:
A method and system for a single chip integrated Bluetooth and FM transceiver and baseband processor are provided. The single chip may comprise a Bluetooth radio, an FM radio, a processor system, and a peripheral transport unit (PTU). FM data may be received and/or transmitted via the FM radio and Bluetooth data may be received and/or transmitted via the Bluetooth radio. The FM radio may receive radio data system (RDS) data. The PTU may support digital and analog interfaces. A processor in the processor system may time-multiplex processing of FM data and processing of Bluetooth data. The single chip may operate in an FM-only, a Bluetooth-only, and an FM-Bluetooth mode. The single chip may reduce power consumption by disabling portions of the Bluetooth radio during FM-only mode and/or disabling analog circuitry when performing digital processing. Communication between Bluetooth and FM channels may be enabled via the single chip.
摘要:
A method and system for a single chip integrated Bluetooth and FM transceiver and baseband processor are provided. The single chip may comprise a Bluetooth radio, an FM radio, a processor system, and a peripheral transport unit (PTU). FM data may be received and/or transmitted via the FM radio and Bluetooth data may be received and/or transmitted via the Bluetooth radio. The FM radio may receive radio data system (RDS) data. The PTU may support digital and analog interfaces. A processor in the processor system may time-multiplex processing of FM data and processing of Bluetooth data. The single chip may operate in an FM-only, a Bluetooth-only, and an FM-Bluetooth mode. The single chip may reduce power consumption by disabling portions of the Bluetooth radio during FM-only mode and/or disabling analog circuitry when performing digital processing. Communication between Bluetooth and FM channels may be enabled via the single chip.
摘要:
A method and system sharing a Bluetooth processor for FM functions are provided. The single chip may comprise an integrated Bluetooth radio, an integrated FM radio, and processor system. A processor in the processor system may be utilized for Bluetooth and FM data processing and may time multiplex between the Bluetooth and FM data processing based on interrupt signals. The processor may operate in a low power mode based on a clock signal generated from a low power oscillator. When a Bluetooth interrupt signal is received, the processor may enable Bluetooth data processing that may be based on a Bluetooth clock signal. When an FM interrupt signal is received, the processor may enable FM data processing that may be based on an FM clock signal. When data processing is complete, the processor may return to the low power mode operation.
摘要:
A method and system sharing a Bluetooth processor for FM functions are provided. The single chip may comprise an integrated Bluetooth radio, an integrated FM radio, and processor system. A processor in the processor system may be utilized for Bluetooth and FM data processing and may time multiplex between the Bluetooth and FM data processing based on interrupt signals. The processor may operate in a low power mode based on a clock signal generated from a low power oscillator. When a Bluetooth interrupt signal is received, the processor may enable Bluetooth data processing that may be based on a Bluetooth clock signal. When an FM interrupt signal is received, the processor may enable FM data processing that may be based on an FM clock signal. When data processing is complete, the processor may return to the low power mode operation.
摘要:
Methods and systems frequency conversion for Bluetooth and FM radio are provided. FM data may be received and/or transmitted via the FM radio and Bluetooth data may be received and/or transmitted via the Bluetooth radio. With an integration of frequency conversion for Bluetooth and FM, both systems may operate from a single frequency source, thereby reducing part count and power consumption. Communication between Bluetooth and FM channels may be enabled via a single chip.
摘要:
An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
摘要:
An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
摘要:
An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
摘要:
An exemplary embodiment of the present invention described and shown in the specification and drawings is a transceiver with a receiver, a transmitter, a local oscillator (LO) generator, a controller, and a self-testing unit. All of these components can be packaged for integration into a single IC including components such as filters and inductors. The controller for adaptive programming and calibration of the receiver, transmitter and LO generator. The self-testing unit generates is used to determine the gain, frequency characteristics, selectivity, noise floor, and distortion behavior of the receiver, transmitter and LO generator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
摘要:
An integrated multi-mode radio transmitter includes a multiplexor and a shared front-end. The is operable to select an IF signal of a plurality of IF signals based upon a selection signal that is indicative of a particular operational mode of the one of the plurality of IF signals. The shared front-end is coupled to receive the selected IF signal, wherein the shared front-end converts the selected IF signal into a radio frequency (RF) signal that is modulated in accordance with the particular operational mode of the one of the plurality of IF stages.