Abstract:
An improved Pirani sensor uses a measuring element disposed within a fluid between a base plate and a cover. The measuring element is held by suspension members that are connected to the base plate. A heating element is thermally conductively connected to the suspension members. Using the sensor the characteristic of the fluid is determined by evaluating the heat transfer from the thermal element through the fluid into the cover when heating power is applied to measuring element. Parasitic conductive heat loss from the measuring element into the suspension members is compensated by applying power to the heating element.
Abstract:
A capacitive filling level sensor has a first capacitive sensor element arranged close to a fluid whose filling level is to be detected, a second capacitive sensor element arranged close to a fluid whose filling level is to be detected, and a switched-capacitor measuring circuit, which is connected to the first and second capacitive sensor elements and which detects the capacitance values thereof. The switched-capacitor measuring circuit produces in response to the detected capacitance values a signal indicative of the filling level. The first capacitive sensor element and the second capacitive sensor element are each defined by two wires of a ribbon cable having at least five wires, the fifth wire extending between the wires which define the capacitive sensor elements, and being connected to ground.
Abstract:
A method comprises suspending a measuring element within a fluid and applying measuring power to the measuring element. Radiation loss compensation power is applied to a heating element. The radiation loss compensation power is selected to compensate parasitic radiative heat loss from the measuring element. Heat transfer from the measuring element into the fluid is evaluated and a property of the fluid is derived. A sensor which implements the method uses a resistive measuring element which is electrically connected to an evaluation circuit. The heating element is electrically connected to a power source. A processor receives an input from the evaluation circuit and calculates a property of the fluid while the power source provides radiation loss compensation power to the first heating element.
Abstract:
An improved Pirani sensor uses a measuring element disposed within a fluid between a base plate and a cover. The measuring element is held by suspension members that are connected to the base plate. A heating element is thermally conductively connected to the suspension members. Using the sensor the characteristic of the fluid is determined by evaluating the heat transfer from the thermal element through the fluid into the cover when heating power is applied to measuring element. Parasitic conductive heat loss from the measuring element into the suspension members is compensated by applying power to the heating element.
Abstract:
A device for growing aquatic plants, in particular filamentous algae or seaweed, has a watertight reservoir (40) suitable for holding water, a plurality of light-emitting elements distributed over the entire volume of the reservoir (40), and an endless conveyor belt (41) with a drive motor (42) for moving the conveyor belt (41) in its endless direction. The conveyor belt is guided through the reservoir by a first deflection mechanism (43) of the device in such a way that at least 50%, preferably 70%, more preferably 90%, more preferably 100% of each of the two surfaces of the conveyor belt (41) receive light from at least one of the lighting elements without being shaded by the conveyor belt (41). The conveyor belt (41) is suitable for anchoring the aquatic plants on it and allowing them to grow while there is water in the reservoir (40).
Abstract:
An improved Pirani sensor uses a measuring element disposed within a fluid between a base plate and a cover. The measuring element is held by suspension members that are connected to the base plate. A heating element is thermally conductively connected to the suspension members. Using the sensor the characteristic of the fluid is determined by evaluating the heat transfer from the thermal element through the fluid into the cover when heating power is applied to measuring element. Parasitic conductive heat loss from the measuring element into the suspension members is compensated by applying power to the heating element.
Abstract:
A method comprises suspending a measuring element within a fluid and applying measuring power to the measuring element. Radiation loss compensation power is applied to a heating element. The radiation loss compensation power is selected to compensate parasitic radiative heat loss from the measuring element. Heat transfer from the measuring element into the fluid is evaluated and a property of the fluid is derived. A sensor which implements the method uses a resistive measuring element which is electrically connected to an evaluation circuit. The heating element is electrically connected to a power source. A processor receives an input from the evaluation circuit and calculates a property of the fluid while the power source provides radiation loss compensation power to the first heating element.
Abstract:
A method for correcting a dual-capacitance pressure sensor for measuring fluid pressure, comprising: at a first time, taking measurements of fluid pressure based on movements of a first membrane and a second membrane of the pressure sensor; at a second time, taking measurements of fluid pressure based on movements of the first membrane and the second membrane; determining a change in the measurement results based on movements of the first membrane between the first point in time and the second point in time; determining a change in the measurement results based on movements of the second membrane between the first point in time and the second point in time; Checking whether the changes in the measurements determined are based solely on a change in fluid pressure or whether the changes in the measurements determined are due to changes in the pressure sensor, and if the latter is the case, determining a correction for the measurements determined at the second point in time.
Abstract:
A housing assembly for receiving at least one sensor for measuring parameters of a fluid has an outer housing with a connection for connecting the housing arrangement to a container containing the fluid. An inner housing is arranged in the outer housing, is suitable for receiving the sensor and is connected to a tube. The tube is connected to the outer housing at the connection and is adapted to direct the fluid into the inner housing. The housing assembly also has a heating device in or on the inner housing which is suitable for heating the inner housing to a predetermined temperature and maintaining it at this temperature. The inner housing and the outer housing are spaced apart from each other except at the junction of the connection and supply pipe and the space formed thereby is evacuated.
Abstract:
An improved Pirani sensor uses a measuring element disposed within a fluid between a base plate and a cover. The measuring element is held by suspension members that are connected to the base plate. A heating element is thermally conductively connected to the suspension members. Using the sensor the characteristic of the fluid is determined by evaluating the heat transfer from the thermal element through the fluid into the cover when heating power is applied to measuring element. Parasitic conductive heat loss from the measuring element into the suspension members is compensated by applying power to the heating element.