Abstract:
An x-ray diffraction imaging (XDI) device includes at least one x-ray source configured to emit an x-ray fan-beam. The XDI device also includes a primary collimator positioned downstream of the at least one x-ray source. The primary collimator defines a plurality of rows of slits. Each slit and each row of slits is separated by an x-ray absorbing material. Each of the rows of slits oriented to transmit at least one x-ray slit-beam in a plane substantially orthogonal to the primary collimator.
Abstract:
A secondary collimator for an X-ray scattering device with horizontal plates and vertical plates arranged perpendicular thereto, the vertical plates being arranged parallel to one another and being inclined by a pre-determinable scattering angle to a transmission direction of an X-ray beam, and the horizontal plates being aligned fan-shaped onto a single point, namely to the X-ray source, and the horizontal plates with the vertical plates forming a rectangular grid with the vertical plates and being combined to form a collimator unit. Moreover, the invention relates to an X-ray scattering device for baggage check with an X-ray source, with a primary collimator which only lets through a fan beam, with a secondary collimator for projecting an area of an item of luggage and with a scattering detector, the secondary collimator being arranged between the item of luggage to be examined and the scattering detector and being developed as mentioned above.
Abstract:
A secondary collimator for an X-ray scattering device with horizontal plates and vertical plates arranged perpendicular thereto, the vertical plates being arranged parallel to one another and being inclined by a pre-determinable scattering angle to a transmission direction of an X-ray beam, and the horizontal plates being aligned fan-shaped onto a single point, namely to the X-ray source, and the horizontal plates with the vertical plates forming a rectangular grid with the vertical plates and being combined to form a collimator unit. Moreover, the invention relates to an X-ray scattering device for baggage check with an X-ray source, with a primary collimator which only lets through a fan beam, with a secondary collimator for projecting an area of an item of luggage and with a scattering detector, the secondary collimator being arranged between the item of luggage to be examined and the scattering detector and being developed as mentioned above.
Abstract:
In an X-ray examination device which comprises an X-ray source for irradiating a body and a detector device, a displaceable diaphragm device defines an angle of aperture which is substantially smaller, due to the selection of the dimension of the apertures, than the measuring angle defined by the associated radiation detector and the X-ray source. By displacement of the aperture with respect to the object to be measured during the measurement over a distance which covers the measuring angle, a high-resolution shadow image can be formed. The entire object is then contiguously irradiated.
Abstract:
The invention relates to a method of examining an item of luggage 1, in which an X-ray fluoroscopic image of the whole item of luggage 1 is produced first, then planiform suspect regions 4, 5, 6 in the X-ray fluoroscopic image are determined and the scanning time during the following production of an X-ray diffraction image depends on whether the X-ray beam is located specifically in a planiform suspect region 4, 5, 6, wherein the scanning time heads towards zero outside a planiform suspect region 4, 5, 6 and lasts long enough inside a planiform suspect region 4, 5, 6 to obtain an informative X-ray diffraction image.
Abstract:
The invention relates to a method of examining an item of luggage 1, in which an X-ray fluoroscopic image of the whole item of luggage 1 is produced first, then planiform suspect regions 4, 5, 6 in the X-ray fluoroscopic image are determined and the scanning time during the following production of an X-ray diffraction image depends on whether the X-ray beam is located specifically in a planiform suspect region 4, 5, 6, wherein the scanning time heads towards zero outside a planiform suspect region 4, 5, 6 and lasts long enough inside a planiform suspect region 4, 5, 6 to obtain an informative X-ray diffraction image
Abstract:
The antigens procollagen peptide (type (III) and procollagen peptide col 1 (type III) can be determined together immunologically by either(a) reacting a specified amount in each case of labeled procollagen peptide (type III) or procollagen peptide col 1 (type III) and a highly specific antiserum containing antibodies having affinity for both the antigens mentioned together with a sample having an unknown content of procollagen peptide (type III) and/or procollagen peptide col 1 (type III), separating off the antigen-antibody complex formed and measuring the amount of labeling in the complex and/or in the supernatant, or(b) bringing a specified amount of the highly specific antiserum to reaction with a sample having an unknown content of procollagen peptide (type III) and/or procollagen peptide col 1 (type III), fixing the unreacted amount of the antibody to procollagen peptide (type III) or procollagen peptide col 1 (type III) bound to a support, and bringing to reaction with a labeled second antibody, and then determining the amount of bound or excess second antibody by measuring the labeling. An anti-procollagen peptide col 1 (type III) serum is preferred as the highly specific serum, and this is obtained by using procollagen peptide col 1 (type III) for immunizing experimental animals and obtaining their serum.
Abstract:
The invention relates to an apparatus for imaging a layer of a body to be examined. The body is irradiated by primary radiation, in response to which the layer emits scattered radiation. The apparatus comprises a diaphragm plate which is disposed outside the primary radiation beam. The diaphragm is rotatable about an axis perpendicular to its major surface, and it has at least one aperture which is disposed off of the axis of rotation. A detector or a superposition device is provided for measuring or superimposing the scattered radiation which passes through the diaphragm plate at different aperture settings. The primary radiation is stopped down to form a flat fan-shaped beam. The diaphragm plate is oriented parallel to the fan-shaped beam. Each aperture corresponds to an associated detector, which follows the rotation of the diaphragm plate. The input face of each detector extends parallel to the diaphragm plate. The detector is arranged so as to be rotatable about a detector axis which is perpendicular to an input face and which extends through its center. The detector rotates in a direction opposite to the direction of rotation of the diaphragm plate and with the same angular velocity as this plate.
Abstract:
A process is disclosed for the preparation of a diagnositc agent for scanning the RES, in particular the liver, by mixing the sodium salt of 1-phenyl-2,3-dimethyl-pyrazolone-4-methylamino-methylsulfonic acid or 1-phenyl-2,3-dimethyl-pyrazolone in aqueous solution with tin(II) salt, adjusting the solution to a pH between 4 and 9, optionally lyophilizing the mixture and adding .sup.99m Tc-pertechnetate in physiological saline solution.
Abstract:
Nuclide generators for preparing sterile and pyrogen-free radioactive solutions consist of a generator column which is provided with radiation shielding and connected to a container for eluting agent and has a connection to a container for eluate. The generator and the container for eluting agent are located in vessels with centering devices, wherein the generator column with its radiation shielding is located in a fixed position relative to the vessel between two centering devices and connected via a cannula to the container for eluting agent which is held in a recess of one centering device in a fixed position relative to the generator column. The other centering device has also a recess for guiding and holding the eluate container which is connected to the generator column via a cannula.