Abstract:
A flow meter for measurement of a metered fluid has a sensor element that receives a flow input of a metered fluid and outputs a flow output of the metered fluid, and a battery element. The sensor element has an inductor element and a magnetic element coupled to the inductor element. In response to movement of the magnetic element relative to the inductor element caused by a fluid pressure differential of the metered fluid, the inductive value of the inductor element changes.
Abstract:
According to an embodiment of the present disclosure, a plurality of light-emitting diode (LED) modules in series are monitored. When an LED module is detected as failing or operating inadequately, a bypass switch removes the particular LED module from the series and the voltage provided to the series is modified. When the LED modules are detected as having too high of a temperature, the current provided to the LED modules is limited.
Abstract:
A circuit comprises a frequency divider configured to receive an oscillating signal generated by an oscillator and to divide the oscillating signal into a clock signal, wherein the division ratio of the frequency divider is set to a value equal to one of: the integer part of the resonant frequency of the oscillator and the integer part of the resonant frequency of the oscillator plus 1.
Abstract:
A circuit comprises a frequency divider configured to receive an oscillating signal generated by an oscillator and to divide the oscillating signal into a clock signal, wherein the division ratio of the frequency divider is set to a value equal to one of: the integer part of the resonant frequency of the oscillator and the integer part of the resonant frequency of the oscillator plus 1. The circuit further comprises a control element which switchable connects or disconnects a calibration element to alter the frequency of the oscillation signal input to the frequency divider based on a number of oscillations that have transpired in the oscillating signal.
Abstract:
A circuit comprises a frequency divider coupled to receive an oscillating signal generated by an oscillator and a division ratio and configured to divide the oscillating signal by the division ratio into a clock signal; a temperature compensation circuit configured to measure a temperature of the oscillator and generate a division ratio to be provided to the frequency divider and a first value on the basis of the measured temperature; and a control system configured to control connection between a calibration element and the oscillator based on the first value and the oscillating signal of the oscillator.
Abstract:
A circuit comprises a frequency divider coupled to receive an oscillating signal generated by an oscillator and a division ratio and configured to divide the oscillating signal by the division ratio into a clock signal; a temperature compensation circuit configured to measure a temperature of the oscillator and generate a division ratio to be provided to the frequency divider and a first value on the basis of the measured temperature; and a control system configured to control connection between a calibration element and the oscillator based on the first value and the oscillating signal of the oscillator.
Abstract:
A circuit comprises a frequency divider coupled to receive an oscillating signal generated by an oscillator and a division ratio and configured to divide the oscillating signal by the division ratio into a clock signal; a temperature compensation circuit configured to measure a temperature of the oscillator and generate a division ratio to be provided to the frequency divider and a first value on the basis of the measured temperature; and a control system configured to control connection between a calibration element and the oscillator based on the first value and the oscillating signal of the oscillator.
Abstract:
A flow meter for measurement of a metered fluid has a sensor element that receives a flow input of a metered fluid and outputs a flow output of the metered fluid, and a battery element. The sensor element has an inductor element and a magnetic element coupled to the inductor element. In response to movement of the magnetic element relative to the inductor element caused by a fluid pressure differential of the metered fluid, the inductive value of the inductor element changes.
Abstract:
Congruent power and timing signals in a single electronic device. In an embodiment, a circuit may include just one isolation transformer operable to generate a power signal and a timing signal. On the secondary side, two branches may extract both a power signal and a clock signal for use in the circuit on the isolated secondary side. The first branch may be coupled to the transformer and operable to manipulate the signal into a power signal, such as a 5V DC signal. Likewise, the second circuit branch is operable to manipulate the signal into a clock signal, such as a 5 V signal with a frequency of 1 MHz. By extracting both a power supply signal and a clock signal from the same isolation transformer on the secondary side, valuable space may be saved on an integrated circuit device with only having a single winding for a single isolation transformer.
Abstract:
According to an embodiment of the present disclosure, a plurality of light-emitting diode (LED) modules in series are monitored. When an LED module is detected as failing or operating inadequately, a bypass switch removes the particular LED module from the series and the voltage provided to the series is modified. When the LED modules are detected as having too high of a temperature, the current provided to the LED modules is limited.