摘要:
An arc fault circuit breaker comprising an electronics portion that is interconnected with a mechanical portion is presented. A plunger arm affixed to the end of a plunger shaft of a solenoid connects the electronics portion with the mechanical portion. A protrusion is provided to assist in assembly of the circuit breaker. The protrusion depends from the plunger arm. An assembler applies a light downward force with one finger on the protrusion and the plunger arm tends to assume a position at right angles to the surface of the printed circuit board. When the electronics portion is connected with the mechanical portion, the plunger arm is properly aligned and it enters into the slot. If the electronics portion is slightly offset, the assembler's finger on the protrusion can move the plunger arm slightly to align the plunger arm. Thus, the invention enables an assembler to hold and guide the plunger arm into the correct position with one hand while assembling the circuit breaker.
摘要:
A device for testing for a wiring fault condition is disclosed. The device includes an electrical connector, a first signal generator, a second signal generator, and a user interface. The electrical connector includes first and second contacts that are configured to establish an electrical connection to the wiring. The first signal generator is in signal communication with the electrical connector, and is configured to generate a signal on the wiring and to receive a reflected signal therefrom. The second signal generator is in signal communication with the electrical connector, and is configured to generate a radio frequency signal on the wiring. The user interface is in signal communication with either or both of the first and second signal generators.
摘要:
An arc fault current interrupting (AFCI) circuit breaker includes a pair of electrical contacts for stopping the flow of electrical current in a protected portion of the distribution circuit. A low pass filter is configured to receive a signal indicative of a voltage across a resistance in the distribution circuit. The low pass filter amplifies the signal and provides the signal to an arc fault detection circuit. The low pass filter includes an input resistance and a feedback resistance. In one embodiment of the invention, the input resistance has a positive temperature coefficient. In another embodiment, the feedback resistance has a negative temperature coefficient. In yet another embodiment, the input resistance has a positive temperature coefficient and the feedback resistance has a negative temperature coefficient. In any of the embodiments, when temperature decreases, the gain provided by the temperature compensation circuit increases due to the temperature coefficients of the input and/or feedback resistors. As a result, the arc fault detection circuitry will maintain a constant sensitivity to arc faults throughout the entire operating temperature range of the AFCI circuit breaker.
摘要:
A circuit breaker configured to be remotely operated by a controller is disclosed. The circuit breaker includes a set of main contacts, an operating mechanism, a remotely operable drive system configured to open and close the main contacts separate from actuation of the operating mechanism, and a control circuit in operable communication with the main contacts. The drive system includes a motor, and a primary drive responsive to the motor and in operable communication to open and close the main contacts. The control circuit indicates a closed main contact state in response to the operating mechanism being in an on position and the main contacts being closed, and an open main contact state in response to the operating mechanism being in an on position and the main contacts being held open via the drive system.
摘要:
An arc fault circuit breaker (10) conducting an electric current to a protected load is presented. The circuit breaker (10) has a first (mechanical) compartment (24) and a second (electrical) compartment (62). A bimetal resistor (50) is disposed within the first compartment (24) and conducts the current therethrough. The bimetal resistor (50) has a stud (56) extending into the second compartment (62). A single sense line (60) is electrically connected to the bimetal resistor (50) and routed into the second compartment (62). The sense line (60) and said stud (56) conduct a voltage signal indicative of arcing of the current. A circuit board (84) is disposed within the second compartment (62) and is connected to the sense line (60) and stud (56) within the second compartment (62) to process the voltage signal. The circuit board (84) has a first conductive path (104) electrically connected to the stud (56), and a second conductive path (106) electrically connected to the sense line (60). The first and second conductive paths (104,106) run substantially parallel and proximate to each other such that electromagnetic interference of the voltage signal is substantially reduced.