Abstract:
A radio-wave-transmitting-body position detection system in a vehicle system has a plurality of electronic control devices that are included in a vehicle, and a radio wave transmitting body that transmits a radio signal to the plurality of electronic control devices. The electronic control devices conduct communication with each other using the radio signal. Each electronic control device includes a first electronic control device that conducts communication with the other electronic control device and the radio wave transmitting body using the radio signal, and controls a device included in the vehicle based on a content of the radio signal transmitted from the radio wave transmitting body. The electronic control devices except the first electronic control device include a first transmitting/receiving unit that transmits and receives the radio signal.
Abstract:
A radio-wave-transmitting-body position detection system in a vehicle system has a plurality of electronic control devices that are included in a vehicle, and a radio wave transmitting body that transmits a radio signal to the plurality of electronic control devices. The electronic control devices conduct communication with each other using the radio signal. Each electronic control device includes a first electronic control device that conducts communication with the other electronic control device and the radio wave transmitting body using the radio signal, and controls a device included in the vehicle based on a content of the radio signal transmitted from the radio wave transmitting body. The electronic control devices except the first electronic control device include a first transmitting/receiving unit that transmits and receives the radio signal.
Abstract:
A vehicle control system has a plurality of electronic control devices that are included in a vehicle, a radio wave transmitting body that transmits operation information operating a device included in the vehicle and unique radio-wave-transmitting-body identification information using a radio signal, a first electronic control device that transmits and receive the radio signal to and from a second electronic control device and the radio wave transmitting body, and the second electronic control device that transmits and receive the radio signal to and from the first electronic control device and the radio wave transmitting body. The first electronic control device includes a first storage in which the radio-wave-transmitting-body identification information on the radio wave transmitting body or identification information on the second electronic control device is stored, and a first transmitting/receiving unit that transmits and receives the radio signal.
Abstract:
A detector includes a plurality of sensors and is configured to detect a user in preliminarily set detection areas. The sensors are arrayed horizontally at a rear portion of a vehicle such that the detection areas of the adjacent sensors overlap with each other. If any one of the sensors detects the user and outputs a detection signal (first detection signal), a threshold for a detection signal of one of the sensors adjacent to the sensor (second detection signal) is raised and the first and second detection signals are converted to first and second binary signals, respectively. A rear door is opened if the second binary signal has an output period that is contained in an output period of the first binary signal.
Abstract:
A transmitting device that transmits a FSK-modulated wireless signal to a receiving device includes a controller that determines a transmitting content transmitted to the receiving device and a value of a maximum frequency shift in the FSK modulation, and outputs output information including the transmitting content, the value of the maximum frequency shift, and a value of a center frequency in the FSK modulation; a generator that generates a FSK modulation signal based on the transmitting content, the value of the maximum frequency shift, and the value of the center frequency, which are output from the controller; and a transmitting antenna that transmits the FSK modulation signal, which is generated by the generator, in a form of a wireless signal.
Abstract:
A portable device for displaying charge information has a transmission unit for wirelessly transmitting a signal, requesting charge information on a battery, to a controller provided with a unit for detecting a remaining amount of a battery, a reception unit for wirelessly receiving the charge information from the controller, a storage unit for storing charge information received by the reception unit, a display unit for displaying charge information stored into the storage unit, and a charge prediction information calculating unit for calculating prediction information regarding a state-of-charge of the battery based upon charge information stored in the storage unit in the case of the reception unit being unable to receive charge information from the controller after transmitting a signal requesting charge information from the transmission unit. The prediction information calculated by the charge prediction information calculating unit is displayed in the display unit.
Abstract:
A radio transmitter for modulating a carrier wave in a predetermined frequency with given information to transmit the modulation signal through an antenna having a predetermined resonance frequency f1 has a frequency changing section that changes the frequency of the carrier wave. The frequency changing section changes the frequency of the carrier wave to one of the resonance frequency f1 and a frequency f1×1/n, (wherein n is a given integer of at least 2, to change transmission output power.
Abstract:
A detector includes a plurality of sensors and is configured to detect a user in preliminarily set detection areas. The sensors are arrayed horizontally at a rear portion of a vehicle such that the detection areas of the adjacent sensors overlap with each other. If any one of the sensors detects the user and outputs a detection signal (first detection signal), a threshold for a detection signal of one of the sensors adjacent to the sensor (second detection signal) is raised and the first and second detection signals are converted to first and second binary signals, respectively. A rear door is opened if the second binary signal has an output period that is contained in an output period of the first binary signal.
Abstract:
A vehicle control system has a radio wave transmitting body that transmits information using a radio signal, a first electronic control device that receives the radio signal from the radio wave transmitting body, and a second electronic control device that receives the radio signal from the radio wave transmitting body. The first electronic control device includes a first transmitting/receiving unit that transmits and receives the radio signal, a first information acquisition unit that acquires the information, which is transmitted from the radio wave transmitting body, from the radio signal received by the first transmitting/receiving unit, and an information repeater that passes the information acquired by the first information acquisition unit to the second electronic control device by transmitting the radio signal from the first transmitting/receiving unit.
Abstract:
A transmitting device that transmits a FSK-modulated wireless signal to a receiving device includes a controller that determines a transmitting content transmitted to the receiving device and a value of a maximum frequency shift in the FSK modulation, and outputs output information including the transmitting content, the value of the maximum frequency shift, and a value of a center frequency in the FSK modulation; a generator that generates a FSK modulation signal based on the transmitting content, the value of the maximum frequency shift, and the value of the center frequency, which are output from the controller; and a transmitting antenna that transmits the FSK modulation signal, which is generated by the generator, in a form of a wireless signal.