摘要:
A system includes movement of a treatment delivering x-ray source to a treatment position, creation of projection images of a target using an imaging x-ray source while the treatment delivering x-ray source is disposed at the treatment position, and performance of digital tomosynthesis on the projection images while the treatment delivering x-ray source is disposed at the treatment position to generate a cross-sectional image of the target. A characteristic of an x-ray beam to be delivered by the treatment delivering x-ray source may be automatically modified based on the cross-sectional image. In some aspects, the imaging x-ray source translates in a plane normal to a beam axis of the treatment delivering x-ray source at the treatment position, and pivots about an axis passing through the imaging x-ray source during creation of projection images. Creation of the projection images may alternatively include emission of a respective x-ray beam from each of a plurality of sources of the imaging x-ray source, wherein the imaging x-ray source is stationary with respect to the treatment delivering x-ray source during creation of the projection images.
摘要:
A system includes movement of a treatment delivering x-ray source to a treatment position, creation of projection images of a target using an imaging x-ray source while the treatment delivering x-ray source is disposed at the treatment position, and performance of digital tomosynthesis on the projection images while the treatment delivering x-ray source is disposed at the treatment position to generate a cross-sectional image of the target. A characteristic of an x-ray beam to be delivered by the treatment delivering x-ray source may be automatically modified based on the cross-sectional image. In some aspects, the imaging x-ray source translates in a plane normal to a beam axis of the treatment delivering x-ray source at the treatment position, and pivots about an axis passing through the imaging x-ray source during creation of projection images. Creation of the projection images may alternatively include emission of a respective x-ray beam from each of a plurality of sources of the imaging x-ray source, wherein the imaging x-ray source is stationary with respect to the treatment delivering x-ray source during creation of the projection images.
摘要:
Some aspects include a system, method, and computer-readeable medium to divide a representation of a target volume into an array of sub-volumes; define a high dose volume to which a high dose of radiation is to be delivered; define a plurality of sampling volumes; direct an estimated dose of radiation to each sub-volume; determine whether the dose of radiation delivered to each high dose volume is at least a minimum threshold dose, and that the radiation delivered to the plurality of sampling volumes for each of the sub-volumes is at least a minimum difference less than the radiation delivered to the high dose volume; adjust the estimated dose of radiation directed to each sub-volume; and develop a radiation treatment plan, including the adjusted dose, to invoke a biological effect of spatially separated radiation.
摘要:
Some embodiments include obtaining a projection image of a plurality of fiducials associated with a coordinate system irradiated by a radiotherapy radiation source at a plurality of discrete locations on a trajectory path model, determination of a projection matrix from projection images of the fiducials irradiated by the radiotherapy radiation source at each of the discrete locations, determination of the actual coordinate of the radiotherapy radiation source in the coordinate system associated with the fiducials at the plurality of discrete locations based on the determined projection matrices, and correlating the trajectory path model of the radiotherapy radiation source to the determined actual position of the radiotherapy radiation source at the discrete locations.
摘要:
In some embodiments, a method includes receiving, in a processor, information indicative of (i) a treatment plan defining planned treatment beams, (ii) a patient volume relative to a reference, (iii) ideal intersections of the planned treatment beams with the patient volume at the time the patient is to be treated, (iv) any constraints that prevent achievement of the recommended repositioning using only the patient support, (v) an allowable change to a gantry position from a planned value and an allowable change to a collimator position from a planned value; defining, in the processor, a plurality of alternatives based at least in part on the information indicative of any constraints of the patient support and the information indicative of allowable movement of the gantry and collimator, each alternative defining a modified patient support position and modified beams, each modified beam being based at least in part on a respective one of the planned treatment beams, the change to the position of the gantry for the respective planned treatment beam and the change to the position of the collimator for the respective planned treatment beam; determining, in the processor, for each modified beam of each alternative, an intersection of the patient volume and the modified beam, with the patient volume positioned on the patient support and the patient support having the modified patient support position defined by the alternative; and defining, in the processor, for each alternative, a measure of difference between the ideal intersections and the intersections for the modified beams of the alternative.
摘要:
A system includes emission of first electrons toward a first focal spot using an X-ray tube located at a first position, emission of first radiation from the first focal spot toward an object, acquisition of a first projection of the object based on the emitted first radiation using a computed tomography radiation detector, emission of second electrons toward a second focal spot using the X-ray tube located at the first position, emission of second radiation from the second focal spot toward the object, acquisition of a second projection of the object based on the emitted second radiation using the computed tomography radiation detector, and generation of an image of the object based on the first projection and the second projection.
摘要:
An apparatus, method, system, and means to detect motion of a subject by direct imaging on a treatment plane during a radiotherapy treatment, the method includes delivering a radiotherapy treatment beam to a volume of interest of the subject during a treatment time, acquiring image data during the treatment time associated with the delivery of the radiotherapy treatment beam by a direct imaging of a projection of the treatment volume of interest, providing a real-time display of the acquired image data, determining the occurrence of a motion in the volume of interest during the treatment time, determining the motion exceeds a pre-determined threshold, and outputting an indication the determined motion exceeds the pre-determined threshold during the treatment time.
摘要:
In some embodiments, a method includes receiving, in a processor, information indicative of (i) a treatment plan defining planned treatment beams, (ii) a patient volume relative to a reference, (iii) ideal intersections of the planned treatment beams with the patient volume at the time the patient is to be treated, (iv) any constraints that prevent achievement of the recommended repositioning using only the patient support, (v) an allowable change to a gantry position from a planned value and an allowable change to a collimator position from a planned value; defining, in the processor, a plurality of alternatives based at least in part on the information indicative of any constraints of the patient support and the information indicative of allowable movement of the gantry and collimator, each alternative defining a modified patient support position and modified beams, each modified beam being based at least in part on a respective one of the planned treatment beams, the change to the position of the gantry for the respective planned treatment beam and the change to the position of the collimator for the respective planned treatment beam; determining, in the processor, for each modified beam of each alternative, an intersection of the patient volume and the modified beam, with the patient volume positioned on the patient support and the patient support having the modified patient support position defined by the alternative; and defining, in the processor, for each alternative, a measure of difference between the ideal intersections and the intersections for the modified beams of the alternative.
摘要:
A reconstruction processor (34) reconstructs acquired projection data (S) into an uncorrected reconstructed image (T). A classifying algorithm (66) classifies pixels of the uncorrected reconstructed image (T) at least into metal, bone, tissue, and air pixel classes. A clustering algorithm (60) iteratively assigns pixels to best fit classes. A pixel replacement algorithm (70) replaces metal class pixels of the uncorrected reconstructed image (T) with pixel values of the bone density class to generate a metal free image. A morphological algorithm (80) applies prior knowledge of the subject's anatomy to the metal free image to correct the shapes of the class regions to generate a model tomogram image. A forward projector (88) forward projects the model tomogram image to generate model projection data (Smodel). A corrupted rays identifying algorithm (100) identifies the rays in the original projection data (S) which lie through the regions containing metal objects. A corrupted rays replacement algorithm (102) replaces the corrupted regions with corresponding regions of the model projection data to generate corrected projection data (S′). The reconstruction processor (34) reconstructs the corrected projection data (S) into a corrected reconstructed 3D image (T′).
摘要:
A reconstruction processor (34) reconstructs acquired projection data (S) into an uncorrected reconstructed image (T). A classifying algorithm (66) classifies pixels of the uncorrected reconstructed image (T) at least into metal, bone, tissue, and air pixel classes. A clustering algorithm (60) iteratively assigns pixels to best fit classes. A pixel replacement algorithm (70) replaces metal class pixels of the uncorrected reconstructed image (T) with pixel values of the bone density class to generate a metal free image. A morphological algorithm (80) applies prior knowledge of the subject's anatomy to the metal free image to correct the shapes of the class regions to generate a model tomogram image. A forward projector (88) forward projects the model tomogram image to generate model projection data (Smodel). A corrupted rays identifying algorithm (100) identifies the rays in the original projection data (S) which lie through the regions containing metal objects. A corrupted rays replacement algorithm (102) replaces the corrupted regions with corresponding regions of the model projection data to generate corrected projection data (S). The reconstruction processor (34) reconstructs the corrected projection data (S) into a corrected reconstructed 3D image (T′).