摘要:
A method of manufacturing anisotropic bonded magnets includes four steps. The first step fills a compressing metal mold with a compound chiefly made of flaky anisotropic magnetic particles. The second step forms a compression molded substance by molding the compound in the metal mold within an orientation magnetic field. The third step couples the compressing metal mold to a molding metal mold together. The fourth step moves the compression molded substance from the compressing metal mold to the molding metal mold, and then deforms and molds the compression molded substance into a given shape. This method allows controlling the anisotropy of the anisotropic bonded magnet.
摘要:
A stator 13 on whose outer circumference a plurality of magnetic poles 13a are arranged is mounted on a substrate 11, and a rotor 14 is rotatably disposed around the stator. The inner circumferential face of the rotor is provided with a magnet 15 magnetized to have alternately opposite polarities in a direction opposing the stator, and magnetized to have alternately opposite polarities in a direction opposing the substrate. The outer circumferential ends of the magnetic poles of the stator are provided with a first extended portion 13c that extends from a magnetic pole base 13d to the substrate side, and a second extended portion 13b that extends from the magnetic pole base to a side opposite the substrate side. A face of the substrate opposing the rotor is provided with a FG pattern 19 outside the outer circumferential face of the stator such that the FG pattern opposes the magnet. Accordingly, it is possible to improve the precision in detecting the rotational speed by reducing noise superimposed on the FG signal, while securing a high driving efficiency.
摘要:
The motor of the invention is an outer rotor type motor, and a rotor includes a cylindrical rotor frame that is opened at one end thereof in an axial direction, and a hollow cylindrical magnet attached to an inner periphery of the rotor frame. The magnet has a joining portion joined to an inside cylindrical portion of the rotor frame, and a protruding portion that further protrudes in the axial direction from one end, the outer diameter of the protruding portion is larger than the inner diameter of the rotor frame, and the joining portion is directly brought into close contact with a portion ranging from the one end to at least a portion of the inside cylindrical portion.
摘要:
A stator 13 on whose outer circumference a plurality of magnetic poles 13a are arranged is mounted on a substrate 11, and a rotor 14 is rotatably disposed around the stator. The inner circumferential face of the rotor is provided with a magnet 15 magnetized to have alternately opposite polarities in a direction opposing the stator, and magnetized to have alternately opposite polarities in a direction opposing the substrate. The outer circumferential ends of the magnetic poles of the stator are provided with a first extended portion 13c that extends from a magnetic pole base 13d to the substrate side, and a second extended portion 13b that extends from the magnetic pole base to a side opposite the substrate side. A face of the substrate opposing the rotor is provided with a FG pattern 19 outside the outer circumferential face of the stator such that the FG pattern opposes the magnet. Accordingly, it is possible to improve the precision in detecting the rotational speed by reducing noise superimposed on the FG signal, while securing a high driving efficiency.
摘要:
An ink ejecting apparatus is composed of a piezoelectric ceramics plate, a cover plate, and a nozzle plate. The piezoelectric ceramics plate is provided with a plurality of grooves. The cover plate is composed of a front plate and a rear plate. The rear plate is provided with a plurality of ink inlet holes and a manifold. The cover plate is bonded to the piezoelectric ceramics plate to define a plurality of ink chambers communicating with the manifold through the ink inlet holes and a plurality of air chambers that do not communicate with the manifold.
摘要:
The motor of the invention is an outer rotor type motor, and a rotor includes a cylindrical rotor frame that is opened at one end thereof in an axial direction, and a hollow cylindrical magnet attached to an inner periphery of the rotor frame. The magnet has a joining portion joined to an inside cylindrical portion of the rotor frame, and a protruding portion that further protrudes in the axial direction from one end, the outer diameter of the protruding portion is larger than the inner diameter of the rotor frame, and the joining portion is directly brought into close contact with a portion ranging from the one end to at least a portion of the inside cylindrical portion.
摘要:
A camera control apparatus comprises a processor adapted to control a display to display a plurality of sensed images respectively obtained from a plurality of cameras and a transmitter adapted to transmit a command to control another camera to execute color adjustment based on an image signal of a reference region of an image of a reference camera of the images displayed as a list by the processor.
摘要:
An ink ejecting device includes ink channels intercommunicating with slits and air channels intercommunicating with another slits. The ink channels and the air channels have a narrow shape with a rectangular cross-section, and all of the ink channels are filled with ink and the air channels are filled with air. An LSI chip applies a voltage V to a pattern conducting to metal electrodes positioned in air channels located at both sides of an ink channel from which the ink is to be ejected and connects the other patterns connected to metal electrodes in other air channels not adjacent the ejecting ink channel and a pattern conducting to the metal electrodes of the non-ejecting ink channels to a ground line. Therefore, the ink ejecting device of the above structure requires no insulation between ink and electrodes as the working electrodes do not contact the ink.
摘要:
A method of manufacturing a bonded-magnet rotor according to the invention includes forming step and arranging step. The forming step is by forming a bonded-magnet formed body. The arranging step includes: integrating an inside-diameter holding jig, a rotor core, and a rotor-core presser jig; arranging the bonded-magnet formed bodies on the outside periphery of the inside-diameter holding jig; and arranging an outside-diameter-holding magnet-pressure-welding jig to support outside peripheral faces of the bonded-magnet formed bodies. The method further includes steps of: deforming the bonded-magnet formed bodies to fit with the outside peripheral dimension of the rotor core by pressing and transferring the bonded-magnet formed bodies to the rotor core with a forming jig; mutually joining end portions of adjacent ones of the bonded-magnet formed bodies; and integrating the bonded-magnet formed bodies with the rotor core by compressing the bonded-magnet formed bodies. This configuration allows the bonded-magnet rotor with high dimension accuracy.
摘要:
A drive method for an ink ejection device that cancels residual pressure fluctuations using a signal drive power source, wherein at time (b) a positive voltage V from a single power source is applied to an ink chamber 4b1 and other ink chambers 4 are connected to ground. Therefore, the volume of ink chamber 4b1 increases from a natural volume. At time (c), voltage V applied to the ink chamber 4b1 is stopped and a positive voltage V from the single power source is applied to the other ink chambers 4 so that the volume in the ink chamber 4b1 is reduced from the increased volume to an extent beyond the natural volume that causes an ink droplet to be ejected from the nozzle 12 of ink chamber 4b1. At timing (d), application of positive voltage V to the ink chambers 4c0, 4a1, 4c1, 4a2, 4b2, and 4c2 is stopped so that all the ink chambers revert to the natural volume.