摘要:
A magnetic recording medium comprises, on a substrate, a recording auxiliary layer, a recording holding layer, recording control layer, and a recording layer. The recording layer is constructed by using a ferri-magnetic material having perpendicular magnetization. The data can be recorded at a super high density by using the recording and reproducing head of the present invention, because the recording layer has the perpendicular magnetization. The disappearance of data, which would be otherwise caused by the thermomagnetic relaxation phenomenon, is suppressed after recording the data, because the recording layer has large coercive force at the room temperature. The data, which is recorded at the super high density on the magnetic recording medium, can be reproduced by using a magnetic resistance element carried on the recording and reproducing head.
摘要:
A magnetic recording medium comprises, on a substrate, a recording auxiliary layer, a recording holding layer, recording control layer, and a recording layer. The recording layer is constructed by using a ferri-magnetic material having perpendicular magnetization. The data can be recorded at a super high density by using the recording and reproducing head of the present invention, because the recording layer has the perpendicular magnetization. The disappearance of data, which would be otherwise caused by the thermomagnetic relaxation phenomenon, is suppressed after recording the data, because the recording layer has large coercive force at the room temperature. The data, which is recorded at the super high density on the magnetic recording medium, can be reproduced by using a magnetic resistance element carried on the recording and reproducing head.
摘要:
External magnetic fields H(x) or reproducing light beams L(x) having different intensity patterns are applied to an identical recording position on a magneto-optical recording medium so that different pieces of information corresponding to the patterns are reproduced from the identical recording position. A function H(x) or L(x) is a password for obtaining the information. Only a person, who knows the function, can access specified information recorded on the magneto-optical recording medium. The function H(x) or L(x) is a function in which the magnetic field intensity or the light intensity is modulated with respect to the recording position x so that magnetic domains may be thinned out to perform reproduction at a specified cycle from continuous magnetic domains in a recording area. Other than the use for the purpose of security, reproduced C/N can be remarkably improved by performing reproduction n times while radiating a reproducing light beam PL/PH which is power-modulated so that the high power PH is applied at every cycle which is not less than n times the recording clock, to a specified magneto-optical recording medium capable of magnetic domain-magnifying reproduction.
摘要:
External magnetic fields H(x) or reproducing light beams L(x) having different intensity patterns are applied to an identical recording position on a magneto-optical recording medium so that different pieces of information corresponding to the patterns are reproduced from the identical recording position. A function H(x) or L(x) is a password for obtaining the information. Only a person, who knows the function, can access specified information recorded on the magneto-optical recording medium. The function H(x) or L(x) is a function in which the magnetic field intensity or the light intensity is modulated with respect to the recording position x so that magnetic domains may be thinned out to perform reproduction at a specified cycle from continuous magnetic domains in a recording area. Other than the use for the purpose of security, reproduced C/N can be remarkably improved by performing reproduction n times while radiating a reproducing light beam PL/PH which is power-modulated so that the high power PH is applied at every cycle which is not less than n times the recording clock, to a specified magneto-optical recording medium capable of magnetic domain-magnifying reproduction.
摘要:
A magneto-optical recording medium has magneto-optical recording layers (11, 12, 13) and reproducing layers (21, 22, 23). The information recorded in the reproducing layers are reproduced by means of reproducing light beams (31, 32, 33) of different wavelengths, respectively. In reproduction, magnetic domains (4) recorded in the recording layers are transferred in the reproducing layers formed on the respective recording layers, the transferred magnetic domains (5) are enlarged with an external magnetic field, and the information is reproduced. Since information is recorded and reproduced for each recording layer, the recording density is improved. Further since the reproduction signals are amplified by the magnetic domain enlargement, the C/N is improved.
摘要:
A magneto-optical recording medium has magneto-optical recording layers (11, 12, 13) and reproducing layers (21, 22, 23). The information recorded in the reproducing layers are reproduced by means of reproducing light beams (31, 32, 33) of different wavelengths, respectively. In reproduction, magnetic domains (4) recorded in the recording layers are transferred in the reproducing layers formed on the respective recording layers, the transferred magnetic domains (5) are enlarged with an external magnetic field, and the information is reproduced. Since information is recorded and reproduced for each recording layer, the recording density is improved. Further since the reproduction signals are amplified by the magnetic domain enlargement, the C/N is improved.
摘要:
The magneto-optical recording medium has a magnetic domain magnification reproducing layer and an information recording layer. Clock marks are formed on the information recording layer, making it possible to generate a reproducing clock on the basis of these. The clock marks are detected either by irradiating directly with light of wavelength &lgr;2(&lgr;1≠&lgr;2), being different from the light of wavelength &lgr;1 which is used for reproducing the recording marks, or by applying a direct-current magnetic field, transferring and enlarging the clock marks on to the magnetic domain magnification reproducing layer, and detecting the reproduction signals from this magnetic domain magnification reproducing layer. Since the reproducing clock is in exact synchronisation with the recording marks, it is eminently suitable as a clock for pulse-modulated reproducing light and reproducing magnetic fields used when reproducing the reproducing layer.
摘要:
A magneto-optical recording medium comprises, on a substrate, a dielectric layer, a GdFeCo reproducing layer, a non-magnetic layer, and a TbFeCo recording layer. Upon reproduction, a DC magnetic field Hex is applied in the recording direction, and a reproducing light beam is radiated while being modulated to have a low power and a high power in synchronization with a reproducing clock. The reproducing layer is a magnetic film which changes from in-plane magnetization into perpendicular magnetization at a critical temperature Tcr, which has a compensation temperature Tcomp between room temperature and a Curie temperature Tc, and which satisfies Troom
摘要:
A magneto-optic recording medium includes a second auxiliary magnetic film, a first auxiliary magnetic film and a magneto-optic recording film on a substrate. The auxiliary magnetic films change from in-plane magnetization to vertical magnetization at critical temperatures TCR1 and TCR2. Since they have the relation TCR1>TCR2, the magnetic domain transferred from the magneto-optic recording film to the first auxiliary magnetic film at the time of reproduction is expanded in diameter and is transferred to the second auxiliary magnetic film when the temperature profiles of the auxiliary magnetic films inside an optical spot are utilized. The magnetic domain of the magneto-optic recording film can be expanded and transferred, too, by means of magnetostatic coupling by using a non-magnetic film in place of the first auxiliary magnetic film. Pulse reproduction light subjected to power modulation in synchronism with a reproduction clock can be used at the time of reproduction. Even when a very small magnetic domain is recorded, the intensity of an amplified reproduction signal can be detected and excellent C/N can be obtained.
摘要:
A magneto-optic recording medium includes a second auxiliary magnetic film, a first auxiliary magnetic film and a magneto-optic recording film on a substrate. The auxiliary magnetic films change from in-plane magnetization to vertical magnetization at critical temperatures TCR1 and TCR2. Since they have the relation TCR1>TCR2, the magnetic domain transferred from the magneto-optic recording film to the first auxiliary magnetic film at the time of reproduction is expanded in diameter and is transferred to the second auxiliary magnetic film when the temperature profiles of the auxiliary magnetic films inside an optical spot are utilized. The magnetic domain of the magneto-optic recording film can be expanded and transferred, too, by means of magnetostatic coupling by using a non-magnetic film in place of the first auxiliary magnetic film. Pulse reproduction light subjected to power modulation in synchronism with a reproduction clock can be used at the time of reproduction. Even when a very small magnetic domain is recorded, the intensity of an amplified reproduction signal can be detected and excellent C/N can be obtained.