摘要:
A magnetic resonance imaging apparatus generates an MR signal from an object by applying a gradient field pulse generated by a gradient field coil and a high-frequency magnetic field pulse generated by a high-frequency coil to the object in a static field, and reconstructs an image on the basis of the MR signal. The gradient field coil is housed in a sealed vessel. The internal air in the sealed vessel is exhausted by the pump to prevent noise. By controlling the operation of the pump using a control circuit, noise in imaging operation can be reduced more effectively.
摘要:
A magnetic resonance imaging apparatus includes an imaging condition acquisition unit and an imaging unit. The imaging condition acquisition unit acquires at least one of an amplitude and a phase of a radio frequency transmission signal so as to reduce a deviation of data in at least one region of interest set in an object. The imaging unit acquires image data by imaging according to an imaging condition including at least the one of the amplitude and the phase.
摘要:
A magnetic resonance imaging apparatus which applies RF pulses to a subject placed on a top board which is moving in an imaging field in which a static magnetic field and gradient magnetic fields are formed, acquiring magnetic resonance signals emitted from the subject as a result of application of the RF pulses, producing image data based on the acquired magnetic resonance signals, and stopping the generation of a drive signal to move the top board during a magnetic resonance signal acquisition interval.
摘要:
A magnetic resonance imaging apparatus includes a static magnetic field magnet which generates a static magnetic field, a gradient coil unit which generates a gradient magnetic field for overlapping with the static magnetic field, a shim unit which is disposed between the static magnetic field magnet and the gradient coil unit to control the static magnetic field, and a heat shielding member which is disposed between the gradient coil unit and the shim unit to shield a radiant heat of the gradient coil unit.
摘要:
In addition to the known MT (magnetization transfer) effect, an RMT (reverse MT) is newly found, which increases a detected MR signal strength. Both the MT and RMT effects can be explained with mutual interaction, such as phenomena of chemical exchange and/or cross relaxation, acted between a pool of water proton spins and another pool of macromolecule proton spins, for example, within an object. In order to enhance the MT or RMT effect, the frequency bandwidths of RF pulses, such as a 90.degree. RF exciting pulse in a SE or FSE method, an inversion pulse in a FLAIR or fast FLAIR method, and others, are controlled. To enhance the MT effect, the bandwidth is controlled into a wider value (approx. more than 1250 Hz) than the normally (conventionally) used bandwidth, while to obtain the RMT effect, the bandwidth is controlled into a narrower value (approx. less than 1000 Hz) than the normally used bandwidth. Actively controlling the MT or RMT effect permits changed image contrast in MR imaging.
摘要:
A magnetic resonance imaging system includes a static magnetic field generating section, a gradient magnetic field applying section, an RF pulse applying section, a sequence control section, a receiving section, and an imaging processing section. The sequence control section causes an RF pulse to excite magnetic resonance, causes at least one of the RF pulse and the gradient field to produce an initial magnetic resonance echo, applies a read gradient field to the imaging volume upon reception of the magnetic resonance echo, and inverts the read gradient field at least once to produce at least one magnetic resonance echo in addition to the initial magnetic resonance echo. The receiving section adds and averages data of a plurality of such magnetic resonance echoes or performs an addition or subtraction of the magnetic resonance echoes.
摘要:
Disclosed is a radiation detector provided at both ends with radiation source position detecting means each including three to five electrode plates in which a bias electrode plate centrally disposed has cover layers on both surfaces, and signal electrode plates disposed on both sides of the bias electrode plate each have a cover layer on only one surface farther from the bias electrode plate. Material of the cover layer has a smaller secondary electron emissive power than that of the material of the electrode plates with respect to incident radiation.
摘要:
A magnetic resonance imaging apparatus includes an imaging condition acquisition unit and an imaging unit. The imaging condition acquisition unit acquires at least one of optimum amplitude and optimum phase of a radio frequency transmission signal so as to reduce a deviation of data in at least one region of interest set in an object. The imaging unit acquires image data by imaging according to an imaging condition including at least one of optimum amplitude and optimum phase.
摘要:
A magnetic resonance apparatus in which magnetic metal pieces are accommodated in an accommodation section so as to correct uniformity in a main magnetic field, includes an acquisition unit which acquires temperature information related to at least one of a temperature of the magnetic metal pieces accommodated in the accommodation section, a temperature of the accommodation section, and a temperature of a position in the vicinity of the accommodation section, and a temperature adjustment unit which adjusts the temperature of the magnetic metal pieces to a target temperature by preheating the magnetic metal pieces on the basis of the temperature information acquired by the acquisition unit.
摘要:
A magnetic resonance imaging apparatus includes a static magnetic field magnet which generates a static magnetic field, a gradient coil unit which generates a gradient magnetic field for overlapping with the static magnetic field, a shim unit which is disposed between the static magnetic field magnet and the gradient coil unit to control the static magnetic field, and a heat shielding member which is disposed between the gradient coil unit and the shim unit to shield a radiant heat of the gradient coil unit.