摘要:
A plasma display panel has an improved cell electrode structure including: a pair of sustaining and scanning electrodes which are approximately similar or equal in area to each other, and which are different from each other in pattern shape. Each of the scanning electrode alignments further includes a plurality of scanning electrodes. Adjacent two of the scanning electrodes are separated from each other by the separation wall. Each of the sustaining electrode alignments further includes a plurality of sustaining electrodes. Adjacent two of the sustaining electrodes are separated from each other by the separation wall.
摘要:
A plasma display panel is provided with a transparent substrate, and scanning electrodes and sustaining electrodes formed on the transparent substrate extending in a first direction. An area of the scanning electrode is smaller than an area of the sustaining electrode in each of display cells. The widths of the scanning electrode and the sustaining electrode in a second direction crossing the first direction are substantially equal to each other.
摘要:
Ribs for defining pixel cells are formed in the shape of a lattice, and sustain electrodes and scan electrodes are disposed near the ribs. The electrodes are spaced apart in each pixel cell, and the sustain electrode and the scan electrode are each cut away between pixel cells arranged in the row direction to provide each pixel cell with individually separated electrodes. In addition, between pixel cells adjacent to each other in the row direction, the sustain electrodes and the scan electrodes are connected to each other by means of a sustain-side bus electrode and a scan-side bus electrode, respectively. This makes it possible to provide a high luminous efficiency. Furthermore, each pixel cell is provided with a wide distance between the electrodes and thereby with a large effective opening portion. Thus, this provides only a small amount of reduction in intensity when the electrodes are spaced apart between the pixel cells arranged in the row direction in order to increase the luminous efficiency. The sustain electrodes or the scan electrodes can be connected to each other or shared between pixel cells adjacent to each other in the column direction and thus the effective opening portion can be made larger, thereby making it possible to provide a further increased intensity and luminous efficiency.
摘要:
Ribs for defining pixel cells are formed in the shape of a lattice, and sustain electrodes and scan electrodes are disposed near the ribs. The electrodes are spaced apart in each pixel cell, and the sustain electrode and the scan electrode are each cut away between pixel cells arranged in the row direction to provide each pixel cell with individually separated electrodes. In addition, between pixel cells adjacent to each other in the row direction, the sustain electrodes and the scan electrodes are connected to each other by means of a sustain-side bus electrode and a scan-side bus electrode, respectively. This makes it possible to provide a high luminous efficiency.
摘要:
Ribs for defining pixel cells are formed in the shape of a lattice, and sustain electrodes and scan electrodes are disposed near the ribs. The electrodes are spaced apart in each pixel cell, and the sustain electrode and the scan electrode are each cut away between pixel cells arranged in the row direction to provide each pixel cell with individually separated electrodes. In addition, between pixel cells adjacent to each other in the row direction, the sustain electrodes and the scan electrodes are connected to each other by means of a sustain-side bus electrode and a scan-side bus electrode, respectively. This makes it possible to provide a high luminous efficiency. Furthermore, each pixel cell is provided with a wide distance between the electrodes and thereby with a large effective opening portion. Thus, this provides only a small amount of reduction in intensity when the electrodes are spaced apart between the pixel cells arranged in the row direction in order to increase the luminous efficiency. The sustain electrodes or the scan electrodes can be connected to each other or shared between pixel cells adjacent to each other in the column direction and thus the effective opening portion can be made larger, thereby making it possible to provide a further increased intensity and luminous efficiency.
摘要:
Ribs for defining pixel cells are formed in the shape of a lattice, and sustain electrodes and scan electrodes are disposed near the ribs. The electrodes are spaced apart in each pixel cell, and the sustain electrode and the scan electrode are each cut away between pixel cells arranged in the row direction to provide each pixel cell with individually separated electrodes. In addition, between pixel cells adjacent to each other in the row direction, the sustain electrodes and the scan electrodes are connected to each other by means of a sustain-side bus electrode and a scan-side bus electrode, respectively. This makes it possible to provide a high luminous efficiency. Furthermore, each pixel cell is provided with a wide distance between the electrodes and thereby with a large effective opening portion. Thus, this provides only a small amount of reduction in intensity when the electrodes are spaced apart between the pixel cells arranged in the row direction in order to increase the luminous efficiency. The sustain electrodes or the scan electrodes can be connected to each other or shared between pixel cells adjacent to each other in the column direction and thus the effective opening portion can be made larger, thereby making it possible to provide a further increased intensity and luminous efficiency.
摘要:
Ribs for defining pixel cells are formed in the shape of a lattice, and sustain electrodes and scan electrodes are disposed near the ribs. The electrodes are spaced apart in each pixel cell, and the sustain electrode and the scan electrode are each cut away between pixel cells arranged in the row direction to provide each pixel cell with individually separated electrodes. In addition, between pixel cells adjacent to each other in the row direction, the sustain electrodes and the scan electrodes are connected to each other by means of a sustain-side bus electrode and a scan-side bus electrode, respectively. This makes it possible to provide a high luminous efficiency. Furthermore, each pixel cell is provided with a wide distance between the electrodes and thereby with a large effective opening portion. Thus, this provides only a small amount of reduction in intensity when the electrodes are spaced apart between the pixel cells arranged in the row direction in order to increase the luminous efficiency. The sustain electrodes or the scan electrodes can be connected to each other or shared between pixel cells adjacent to each other in the column direction and thus the effective opening portion can be made larger, thereby making it possible to provide a further increased intensity and luminous efficiency.
摘要:
When a priming erasure pulse Ppre is applied, weak discharge occurs between a scanning electrode and a sustaining electrode, whereas between the scanning electrode and a data electrode, opposed discharge will not occur or, if any, may occur extremely faintly, and wall charge stuck to the scanning and sustaining electrodes, therefore, is decreased in amount to such an extent that erroneous discharge may not occur in the following address period Ta, so that the data electrode has positive-polarity wall charge left unreduced thereon or has a relatively large amount of wall charge left as stuck thereto, as a result, a sufficient level of write-in discharge can be generated even with a low value of the data voltage Vd.
摘要:
A method for driving a PDP is provided which is capable of improving reliability in selective operations, acquiring excellent displaying characteristics, improving contrast, and accommodating a difference in driving characteristics caused by a color to be displayed. If a discharge initiating threshold voltage between surface electrodes is 250 V and the discharge initiating threshold voltage between facing electrodes in a state where lots of activated particles exist in discharging space is 350 V, an ultimate potential of a pre-discharging pulse is set to be 400 V and a electric potential of a pre-discharging pulse is set to be 0 V. When a voltage of the pre-discharging pulse exceeds 250 V being the discharge initiating threshold voltage between surface electrodes, a feeble discharge occurs between surface electrodes. Then, when a voltage of the pre-discharging pulse exceeds 350 V being a discharge initiating voltage between facing electrodes, since lots of activated particles produced by the surface discharge exist in the discharging space, a feeble discharge between facing electrodes occurs.
摘要:
A plasma display panel includes a first substrate, a second substrate, and discharge gas filled in a space defined between the first and second substrates, the first substrate including at least one first electrode extending in a first direction, and at least one second electrode extending in parallel with the first electrode, the second substrate including at least one third electrode extending in a second direction perpendicular to the first direction, and a plurality of partition walls extending in the second direction for partitioning a display area, wherein at least one of the first and second electrodes is comprised of a first portion being in the form of a line extending in the first direction, and defining a discharge gap between itself and an adjacent electrode, and a second portion radially extending from the first portion in a direction away from the discharge gap.