摘要:
To provide an optical recording medium and the like that is adapted to higher density and higher speed recording of 8 times or more than that of DVD (about 28 m/sec or more) and that exhibits superior repeating and reservation properties. An optical recording medium is provided that comprises a substrate, and a recording layer, wherein at least one of recording, reproducing, erasing, and rewriting of information is carried out by means of reversible phase changes at marks on the recording layer, the reversible phase changes at marks are induced between crystalline and amorphous states by laser irradiation, the length of the respective marks is 0.4 μm or less in the traveling direction of the laser irradiation, and the recording layer has a composition expressed by the formula: InαSbβ, wherein α and β are atomic percent of the respective elements; 0.73≦β/(α+β)≦0.90, α+β=100, alternatively a composition expressed by the formula: MγInαSbβ, wherein M represents an element other than In and Sb or an element combination containing two or more elements other than In and Sb; α and β are atomic percent of the respective elements, γ is atomic percent of the element or sum of atomic percent of the respective elements; 0.73≦β/(α+β)≦0.90, 0
摘要:
To provide an optical recording medium and the like that is adapted to higher density and higher speed recording of 8 times or more than that of DVD (about 28 m/sec or more) and that exhibits superior repeating and reservation properties. An optical recording medium is provided that comprises a substrate, and a recording layer, wherein at least one of recording, reproducing, erasing, and rewriting of information is carried out by means of reversible phase changes at marks on the recording layer, the reversible phase changes at marks are induced between crystalline and amorphous states by laser irradiation, the length of the respective marks is 0.4 μm or less in the traveling direction of the laser irradiation, and the recording layer has a composition expressed by the formula: InαSbβ, wherein α and β are atomic percent of the respective elements; 0.73≦β/(α+β)≦0.90, α+β=100, alternatively a composition expressed by the formula: MγInαSbβ, wherein M represents an element other than In and Sb or an element combination containing two or more elements other than In and Sb; α and β are atomic percent of the respective elements, γ is atomic percent of the element or sum of atomic percent of the respective elements; 0.73≦β/(α+β)≦0.90, 0
摘要:
A phase-change optical information recording medium capable of recording information therein, reproducing recorded information therefrom, rewriting recorded information, and erasing recorded information therefrom, which phase-change optical information recording medium is provided with a recording layer containing therein a phase-change recording material including Ge, Ga, Sb, Te, and one element selected from the group consisting of Mg and Ca, which recording material is capable of performing a reversible phase transition from a noncrystalline phase to a crystalline phase and vice verse with the application of an electromagnetic wave thereto.
摘要:
The present invention relates to an recording method for a multi-layered optical recording medium including M phase change recording layers, with M≧2. The method comprises recording a mark in a Kth one of said recording layers by using a laser to irradiate the Kth recording layer using a recording pulse train including a plurality of laser beam pulses. The recording pulse train for the Kth recording layer has a cycle of t(K)[T], the 1st recording layer is the recording layer closest the laser beam, and the Mth recording layer is the recording layer furthest from the laser beam, T is a clock cycle. The following relationship is satisfied:t(1)
摘要:
The present invention relates to an recording method for a multi-layered optical recording medium including M phase change recording layers, with M≧2. The method comprises recording a mark in a Kth one of said recording layers by using a laser to irradiate the Kth recording layer using a recording pulse train including a plurality of laser beam pulses. The recording pulse train for the Kth recording layer has a cycle of t(K)[T], the 1st recording layer is the recording layer closest the laser beam, and the Mth recording layer is the recording layer furthest from the laser beam, T is a clock cycle. The the following relationship is satisfied: t(1)
摘要:
An information recording method including irradiating a phase change recording layer of an optical recording medium with either a multi-pulse laser light train having a recording power of Pw or laser light having an erasing power Pe to record a mark having a length nT in the recording layer, wherein n is an integer of from 3 to 14 and T represents a clock cycle, wherein the multi-pulse laser light train has a constitution such that a heating pulse and a cooling pulse are alternated and the number of heating pulses and the number of cooling pulses each increases by 1 when n increases by 2, and wherein when n is from 6 to 14, the last heating pulse and last cooling pulse have a pulse width of from 0.5T to 0.9T and from 0.7T to 1.5T, respectively.
摘要:
An information recording method including irradiating a phase change recording layer of an optical recording medium with either a multi-pulse laser light train having a recording power of Pw or laser light having an erasing power Pe to record a mark having a length nT in the recording layer, wherein n is an integer of from 3 to 14 and T represents a clock cycle, wherein the multi-pulse laser light train has a constitution such that a heating pulse and a cooling pulse are alternated and the number of heating pulses and the number of cooling pulses each increases by 1 when n increases by 2, and wherein when n is from 6 to 14, the last heating pulse and last cooling pulse have a pulse width of from 0.5T to 0.9T and from 0.7T to 1.5T, respectively.
摘要:
An information recording method including irradiating a phase change recording layer of an optical recording medium with either a multi-pulse laser light train having a recording power of Pw or laser light having an erasing power Pe to record a mark having a length nT in the recording layer, wherein n is an integer of from 3 to 14 and T represents a clock cycle, wherein the multi-pulse laser light train has a constitution such that a heating pulse and a cooling pulse are alternated and the number of heating pulses and the number of cooling pulses each increases by 1 when n increases by 2, and wherein when n is from 6 to 14, the last heating pulse and last cooling pulse have a pulse width of from 0.5T to 0.9T and from 0.7T to 1.5T, respectively.
摘要:
An optical recording method to record information with a mark length recording method, where an amorphous mark and a crystal space are recorded only in the groove of a substrate having a guide groove, with the temporal length of the mark and the space of nT (T denotes a reference clock period; n denotes a natural number). The space is formed at least by an erase pulse of power Pe; all the marks of 4T or longer are formed by a multi pulse alternatively irradiating a heating pulse of power Pw and a cooling pulse of power Pb while Pw>Pb; and the Pe and the Pw satisfy the following relations: 0.15≦Pe/Pw≦0.4, and 0.4≦τw/(τw+τb)≦0.8, where τw denotes the sum of the length of the heating pulses, and τb denotes the sum of the length of the cooling pulses.
摘要:
The object of the present invention is to provide an optical recording medium which can respond to high-density and high recording linear velocity with recording linear velocity at 1.0× to 16× or more (recording linear velocity=approx. 3.5 m/s to 56 m/s or more), and a method and an apparatus for the optical recording and reproducing. Thus, the present invention provides an optical recording medium comprising a substrate and at least a recording layer and a reflective layer disposed on the substrate, in which any one of recording, reproducing, erasing, and rewriting of information is enabled by irradiating laser beam to the recording layer to induce a reversible phase change on the recording layer in which the reflectance (Rg) of the non-recorded portion in the case of the recording layer comprising Zn, Sn, and Sb and the laser beam wavelength being within the range of 650 nm to 665 nm is 12% to 30%.