摘要:
Embodiments of the present invention improve the production efficiency of a perpendicular recording medium while ensuring the scratch resistance thereof. In order to realize high production stability in the high speed production of perpendicular recording media, a target is not provided with a texture of a low melting point or the ratio thereof is decreased. Thus according to one embodiment of the present invention, upon forming a layer having an element of a low melting point in the constituent layers of a perpendicular recording medium, a target can be made using an alloy powder previously formed of an intermetallic compound having a melting point higher than 660° C., thereby preventing thermal deformation.
摘要:
Embodiments of the present invention provide a perpendicular magnetic recording medium which does not cause medium noise to increase due to soft magnetic underlayers, is capable of easily controlling the thickness of a nonmagnetic layer disposed between soft magnetic underlayers, and capable of improving the corrosion resistance of the soft magnetic underlayers. According to one embodiment, in a perpendicular magnetic recording medium, an adhesion layer is formed on a substrate, a soft magnetic underlayer is formed on the adhesion layer, a seed layer and an intermediate layer are formed above the soft magnetic underlayer, and a perpendicular layer is formed on the intermediate layer. The soft magnetic underlayer has a first soft magnetic layer, a second first soft magnetic layer, and an antiferromagnetic coupling layer disposed between the first soft magnetic layer and the second soft magnetic layer, the first soft magnetic layer and the second soft magnetic layer are formed of an alloy comprising Fe as a main ingredient, the antiferromagnetic coupling layer is formed of an Ru—Fe alloy, and an Fe content is from 40 at % to 75 at %.
摘要:
Embodiments of the present invention provide a perpendicular magnetic recording medium which does not cause medium noise to increase due to soft magnetic underlayers, is capable of easily controlling the thickness of a nonmagnetic layer disposed between soft magnetic underlayers, and capable of improving the corrosion resistance of the soft magnetic underlayers. According to one embodiment, in a perpendicular magnetic recording medium, an adhesion layer is formed on a substrate, a soft magnetic underlayer is formed on the adhesion layer, a seed layer and an intermediate layer are formed above the soft magnetic underlayer, and a perpendicular layer is formed on the intermediate layer. The soft magnetic underlayer has a first soft magnetic layer, a second first soft magnetic layer, and an antiferromagnetic coupling layer disposed between the first soft magnetic layer and the second soft magnetic layer, the first soft magnetic layer and the second soft magnetic layer are formed of an alloy comprising Fe as a main ingredient, the antiferromagnetic coupling layer is formed of an Ru—Fe alloy, and an Fe content is from 40 at % to 75 at %.
摘要:
Embodiments of the present invention help to provide an excellent perpendicular recording medium of high medium signal-to-noise (S/N) and with suppressed blurring in writing. According to one embodiment, a perpendicular recording layer is provided by way of a negative magnetic strain soft-magnetic underlayer above a substrate applied with texturing in the circumferential direction. The soft-magnetic underlayer has a first soft magnetic layer, a second soft magnetic layer and a nonmagnetic magnetic layer formed between the first soft magnetic layer and the second soft magnetic layer in which the first soft magnetic layer and the second soft magnetic layer are antiferromagnetically coupled to each other and the easy magnetization axis is directed in the radial direction.
摘要:
Embodiments of the present invention help to provide an excellent perpendicular recording medium of high medium signal-to-noise (S/N) and with suppressed blurring in writing. According to one embodiment, a perpendicular recording layer is provided by way of a negative magnetic strain soft-magnetic underlayer above a substrate applied with texturing in the circumferential direction. The soft-magnetic underlayer has a first soft magnetic layer, a second soft magnetic layer and a nonmagnetic magnetic layer formed between the first soft magnetic layer and the second soft magnetic layer in which the first soft magnetic layer and the second soft magnetic layer are antiferromagnetically coupled to each other and the easy magnetization axis is directed in the radial direction.
摘要:
A medium having high medium S/N and excellent corrosion resistance is achieved. In one embodiment, an adhesion layer, a soft magnetic layer, an intermediate layer, a magnetic recording layer, and a protective layer are deposited, in order, on a substrate. The soft magnetic underlayer consists at least of two soft magnetic layers, the first soft magnetic layer formed on the recording layer side being composed of an amorphous alloy containing 85 at. % or less of Co, and the second soft magnetic layer formed on the substrate side being composed of an alloy containing more than 85 at. % of Co.
摘要:
A medium having high medium S/N and excellent corrosion resistance is achieved. In one embodiment, an adhesion layer, a soft magnetic layer, an intermediate layer, a magnetic recording layer, and a protective layer are deposited, in order, on a substrate. The soft magnetic underlayer consists at least of two soft magnetic layers, the first soft magnetic layer formed on the recording layer side being composed of an amorphous alloy containing 85 at. % or less of Co, and the second soft magnetic layer formed on the substrate side being composed of an alloy containing more than 85 at. % of Co.
摘要:
Embodiments in accordance with the invention realize a perpendicular magnetic record medium with a high media S/N and excellent corrosion resistance. In a perpendicular magnetic record medium in accordance with an embodiment of the present invention prepared by forming an adhesion layer, an underlayer, a seed layer, an intermediate layer, and a recording layer sequentially on a substrate, the seed layer is specified to have a laminated structure consisting of a first seed layer and a second seed layer. The first seed layer consists of an amorphous alloy containing Cr and the second seed layer consists of an amorphous alloy predominantly composed of Ni with an fcc structure.
摘要:
Embodiments of the invention relate to easily achieving a perpendicular magnetic recording medium with high reliability and a magnetic recording apparatus with high recording density by improving the magnetic properties and surface smoothness of the soft magnetic underlayer and, moreover, enhancing adhesion with the substrate. In one embodiment, a perpendicular magnetic recording media composing a substrate, an adhesion layer formed on the substrate in which a second underlayer is laminated on a first underlayer, a soft magnetic underlayer formed on the second underlayer, an intermediate layer formed on the soft magnetic underlayer, a perpendicular recording layer formed on the intermediate layer, wherein the aforementioned first underlayer consists of an alloy composed of at least two elements selected from the group of Ni, Al, Ti, Ta, Cr, and Co, and the aforementioned second underlayer consists of Ta or a Ta-based amorphous structured alloy containing at least one element selected from the group of Ni, Al, Ti, Cr, and Zr.
摘要:
Embodiments of the invention relate to easily achieving a perpendicular magnetic recording medium with high reliability and a magnetic recording apparatus with high recording density by improving the magnetic properties and surface smoothness of the soft magnetic underlayer and, moreover, enhancing adhesion with the substrate. In one embodiment, a perpendicular magnetic recording media composing a substrate, an adhesion layer formed on the substrate in which a second underlayer is laminated on a first underlayer, a soft magnetic underlayer formed on the second underlayer, an intermediate layer formed on the soft magnetic underlayer, a perpendicular recording layer formed on the intermediate layer, wherein the aforementioned first underlayer consists of an alloy composed of at least two elements selected from the group of Ni, Al, Ti, Ta, Cr, and Co, and the aforementioned second underlayer consists of Ta or a Ta-based amorphous structured alloy containing at least one element selected from the group of Ni, Al, Ti, Cr, and Zr.