摘要:
With the objective of achieving defect kind training in a short period of time to teach classification conditions of defects detected as a result of inspecting a thin film device, according to one aspect of the present invention, there is provided a visual inspection method, and an apparatus therefore, comprising the steps of: detecting defects based on inspection images acquired by optical or electronic defect detection means, and at the same time calculating features of the defects; and classifying the defects according to classification conditions set beforehand, wherein said classification condition setting step further includes the steps of: collecting defect features over a large number of defects acquired beforehand from the defect detection step; sampling defects based on the distribution of the collected defect features over the large number of defects; and setting defect classification conditions based on the result of reviewing the sampled defects.
摘要:
The distribution states of defects are analyzed on the basis of the coordinates of defects detected by an inspection apparatus to classify them into a distribution feature category, or any one of repetitive defect, congestion defect, linear distribution defect, ring/lump distribution defect and random defect. In the manufacturing process for semiconductor substrates, defect distribution states are analyzed on the basis of defect data detected by an inspection apparatus, thereby specifying the cause of defect in apparatus or process.
摘要:
The distribution states of defects are analyzed on the basis of the coordinates of defects detected by an inspection apparatus to classify them into a distribution feature category, or any one of repetitive defect, congestion defect, linear distribution defect, ring/lump distribution defect and random defect. In the manufacturing process for semiconductor substrates, defect distribution states are analyzed on the basis of defect data detected by an inspection apparatus, thereby specifying the cause of defect in apparatus or process.
摘要:
With the objective of achieving defect kind training in a short period of time to teach classification conditions of defects detected as a result of inspecting a thin film device, according to one aspect of the present invention, there is provided a visual inspection method, and an apparatus therefor, comprising the steps of: detecting defects based on inspection images acquired by optical or electronic defect detection means, and at the same time calculating features of the defects; and classifying the defects according to classification conditions set beforehand, wherein said classification condition setting step further includes the steps of: collecting defect features over a large number of defects acquired beforehand from the defect detection step; sampling defects based on the distribution of the collected defect features over the large number of defects; and setting defect classification conditions based on the result of reviewing the sampled defects.
摘要:
The distribution states of defects are analyzed on the basis of the coordinates of defects detected by an inspection apparatus to classify them into a distribution feature category, or any one of repetitive defect, congestion defect, linear distribution defect, ring/lump distribution defect and random defect. In the manufacturing process for semiconductor substrates, defect distribution states are analyzed on the basis of defect data detected by an inspection apparatus, thereby specifying the cause of defect in apparatus or process.
摘要:
The distribution states of defects are analyzed on the basis of the coordinates of defects detected by an inspection apparatus to classify them into a distribution feature category, or any one of repetitive defect, congestion defect, linear distribution defect, ring/lump distribution defect and random defect. In the manufacturing process for semiconductor substrates, defect distribution states are analyzed on the basis of defect data detected by an inspection apparatus, thereby specifying the cause of defect in apparatus or process.
摘要:
In a process for manufacturing a semiconductor wafer, defect distribution state analysis is performed so as to facilitate identification of the defect cause including a device cause and a process cause by classifying the defect distribution state according to the defect position coordinates detected by the inspection device, into one of the distribution characteristic categories: repeated defects, clustered defects, arc-shaped regional defects, radial regional defects, line type regional defects, ring and blob type regional defects, and random defects.
摘要:
The distribution states of defects are analyzed on the basis of the coordinates of defects detected by an inspection apparatus to classify them into a distribution feature category, or any one of repetitive defect, congestion defect, linear distribution defect, ring/lump distribution defect and random defect. In the manufacturing process for semiconductor substrates, defect distribution states are analyzed on the basis of defect data detected by an inspection apparatus, thereby specifying the cause of defect in apparatus or process.
摘要:
In a process for manufacturing a semiconductor wafer, defect distribution state analysis is performed so as to facilitate identification of the defect cause including a device cause and a process cause by classifying the defect distribution state according to the defect position coordinates detected by the inspection device, into one of the distribution characteristic categories: repeated defects, clustered defects, arc-shaped regional defects, radial regional defects, line type regional defects, ring and blob type regional defects, and random defects.
摘要:
The distribution states of defects are analyzed on the basis of the coordinates of defects detected by an inspection apparatus to classify them into a distribution feature category, or any one of repetitive defect, congestion defect, linear distribution defect, ring/lump distribution defect and random defect. In the manufacturing process for semiconductor substrates, defect distribution states are analyzed on the basis of defect data detected by an inspection apparatus, thereby specifying the cause of defect in apparatus or process.