Abstract:
A magnetic recording medium having at least two magnetic layers and a non-magnetic intermediate layer held between them. The first magnetic layer (which is closer to the substrate than the non-magnetic intermediate layer) is formed from an alloy composed of Co, Pr, and Cr, with Pt content being 3-9 at %. The second magnetic layer (which is farther from the substrate than the non-magnetic intermediate layer) is formed from a Co-based alloy containing Pt, Cr, and B. The first and second magnetic layers are magnetized in the mutually antiparallel direction in the absence of an applied magnetic field. The magnetic recording medium is characterized by good thermal stability for recording bits, high recording resolution, and low media noise. It is suitable for a magnetic storage for high recording density with high reliability.
Abstract:
In a magnetic storage device, comprising a magnetic recording medium, a drive division that drives said magnetic recording medium in the record direction, a recording division and a regeneration division comprises magnetic head a means that the said magnetic head is put on in the relative motion for the said magnetic recording medium, a signal processing means for carrying out signal input to the said magnetic head and output signal regeneration from the said magnetic head, The said magnetic storage device uses a medium that has a following features; a magnetic layer in the said magnetic recording medium is formed on the substrate through monolayer or multiple underlayer, comprises said magnetic recording medium, the said magnetic layer has granular structure that the magnetic crystal grain is separated by the nonmagnetic phase, and the coercive force orientation ratio is bigger than 1. In the approximation that the said magnetic crystal grain is ellipsoid, the area ratio of the crystal grain of which the extended shaft direction is within 30null from circumferential direction is over 45% or c shaft length radialy measured swells over 1% compared to a shaft length circumferentially measured.
Abstract:
The longitudinal magnetic recording medium includes a non-magnetic substrate, a first underlayer having at least one of an amorphous structure and a fine crystal structure formed on the non-magnetic substrate, a second underlayer having a body-centered cubic structure formed on the first underlayer, a third underlayer having a hexagonal closed packed structure formed on the second underlayer, and a magnetic layer having the hexagonal closed packed structure formed on the third underlayer, wherein the third underlayer is composed of an alloy containing Co and Ru.
Abstract:
An inplane magnetic recording medium having high S/N and thermal stability and a reliable magnetic storage device having surface recording density of 50 megabit/mm2 or more is described. The magnetic recording medium includes magnetic layers formed on a nonmagnetic substrate with a plurality of ground layers therebetween, at least one of the ground layers formed from an alloy of a body-centered cubic structure containing Cr as a main component and B of from 2 atomic % to 12 atomic %. Main components of the magnetic layers include a lower magnetic layer containing Co and Cr of from 10 atomic % to 16 atomic %, with film thickness of from 1.5 nm to 4.5 nm, and an upper magnetic layer containing Co, coupling anti-ferromagnetically with the lower magnetic layer through nonmagnetic intermediate layers.
Abstract:
The present invention provides a magnetic recording medium having a magnetic layer deposited on a substrate through a single-layer underlayer or a multilayer-underlayer, the magnetic layer includes magnetic crystal grains having an acicular structure or amorphous magnetic particles, an average grain size of the magnetic grain and a grain-size dispersion normalized by the average grain size are less than 16 nm and less than 0.5, respectively, a value Kunullv/kT which results from dividing a product of a magnetic anisotropy constant Ku and a volume v of the magnetic grain by a product of a Boltzmann constant k and an absolute temperature T is selected to be greater than 60, and a film thickness of the magnetic layer falls within twice of the average grain size. Thus, there can be realized a magnetic recording system in which a media noise can be reduced, a high S/N and a low bit error rate can be obtained and which has a high recording density of 2 gigabits per one square inches and an MTBF (mean time between failure) of higher than 300000 hours.