Abstract:
A method includes: removing at least a part of an oxide formed on a surface of the sample by relatively scanning the surface of the sample in X and Y directions parallel to the surface while bringing a probe into contact with the surface of the sample; detecting a signal by bringing the probe into contact with the surface of the sample from which at least a part of the oxide is removed at a predetermined detection position in the X direction or the Y direction while a bias voltage is applied to the sample; calculating a spreading resistance value based on the signal; and retracting the probe to keep the probe relatively away from the surface in a Z direction perpendicular to the surface while relatively moving the probe to a next detection position to start scanning the sample from the next detection position.
Abstract:
A method includes: removing at least a part of an oxide formed on a surface of the sample by relatively scanning the surface of the sample in X and Y directions parallel to the surface while bringing a probe into contact with the surface of the sample; detecting a signal by bringing the probe into contact with the surface of the sample from which at least a part of the oxide is removed at a predetermined detection position in the X direction or the Y direction while a bias voltage is applied to the sample; calculating a spreading resistance value based on the signal; and retracting the probe to keep the probe relatively away from the surface in a Z direction perpendicular to the surface while relatively moving the probe to a next detection position to start scanning the sample from the next detection position.