摘要:
A key frame extraction system and method for extracting key frames from a video based on motion analysis of frames within the video. Key frames are highlight frames that are effective in summarizing a video sequence. This allows a user to quickly find a desired spot in a video is long and contains differing subject matter. The key frame extraction system and method uses a triangle model of the motion energy in each frame and extracts key frames based on this model. More specifically, motion analysis is performed on the video frames in order to identify motion acceleration and motion deceleration points within the frames. A triangle model of motion then is constructed based on results of the motion analysis. The apex of the triangle represents a turning point between motion acceleration and motion deceleration. Frames corresponding to this apex are selected as key frames.
摘要:
A key frame extraction system and method for extracting key frames from a video based on motion analysis of frames within the video. Key frames are highlight frames that are effective in summarizing a video sequence. This allows a user to quickly find a desired spot in a video is long and contains differing subject matter. The key frame extraction system and method uses a triangle model of the motion energy in each frame and extracts key frames based on this model. More specifically, motion analysis is performed on the video frames in order to identify motion acceleration and motion deceleration points within the frames. A triangle model of motion then is constructed based on results of the motion analysis. The apex of the triangle represents a turning point between motion acceleration and motion deceleration. Frames corresponding to this apex are selected as key frames.
摘要:
A key frame extraction system and method for extracting key frames from a video based on motion analysis of frames within the video. Key frames are highlight frames that are effective in summarizing a video sequence. This allows a user to quickly find a desired spot in a video is long and contains differing subject matter. The key frame extraction system and method uses a triangle model of the motion energy in each frame and extracts key frames based on this model. More specifically, motion analysis is performed on the video frames in order to identify motion acceleration and motion deceleration points within the frames. A triangle model of motion then is constructed based on results of the motion analysis. The apex of the triangle represents a turning point between motion acceleration and motion deceleration. Frames corresponding to this apex are selected as key frames.
摘要:
A key frame extraction system and method for extracting key frames from a video based on motion analysis of frames within the video. Key frames are highlight frames that are effective in summarizing a video sequence. This allows a user to quickly find a desired spot in a video is long and contains differing subject matter. The key frame extraction system and method uses a triangle model of the motion energy in each frame and extracts key frames based on this model. More specifically, motion analysis is performed on the video frames in order to identify motion acceleration and motion deceleration points within the frames. A triangle model of motion then is constructed based on results of the motion analysis. The apex of the triangle represents a turning point between motion acceleration and motion deceleration. Frames corresponding to this apex are selected as key frames.
摘要:
The present invention includes a key frame extraction system and method for extracting key frames from a video based on motion analysis of frames within the video. Key frames are highlight frames that are effective in summarizing a video sequence. This allows a user to quickly find a desired spot in a video is long and contains differing subject matter. The key frame extraction system and method uses a triangle model of the motion energy in each frame and extracts key frames based on this model. More specifically, motion analysis is performed on the video frames in order to identify motion acceleration and motion deceleration points within the frames. A triangle model of motion then is constructed based on results of the motion analysis. The apex of the triangle represents a turning point between motion acceleration and motion deceleration. Frames corresponding to this apex are selected as key frames.
摘要:
Various embodiments provide methods and systems for streaming data that can facilitate streaming during bandwidth fluctuations in a manner that can enhance the user experience. In one aspect, a forward-shifting technique is utilized to buffer data that is to be streamed, e.g. an enhancement layer in a FGS stream. Various techniques can drop layers actively when bandwidth is constant. The saved bandwidth can then be used to pre-stream enhancement layer portions. In another aspect, a content-aware decision can be made as to how to drop enhancement layers when bandwidth decreases. During periods of decreasing bandwidth, if a video segment does not contain important content, the enhancement layers will be dropped to keep the forward-shifting of the enhancement layer unchanged. If the enhancement layer does contain important content, it will be transmitted later when bandwidth increases.
摘要:
A light emitting diode (LED) device comprises a base and a cover packaging of a rectifier diode chip and a light emitting diode chip connecting in series with a metal wire. The LED device can be plugged directly into the socket of the LED light string without any other external rectifier circuits. Moreover, the device has advantages of small size, easy-to-use and easy-to-change. By adopting different connection methods with the LED device, it can achieve anticipative functions, such as half-wave, full-wave and bridge rectifier, etc.
摘要:
Various embodiments provide methods and systems for streaming data that can facilitate streaming during bandwidth fluctuations in a manner that can enhance the user experience. In one aspect, a forward-shifting technique is utilized to buffer data that is to be streamed, e.g. an enhancement layer in a FGS stream. Various techniques can drop layers actively when bandwidth is constant. The saved bandwidth can then be used to pre-stream enhancement layer portions. In another aspect, a content-aware decision can be made as to how to drop enhancement layers when bandwidth decreases. During periods of decreasing bandwidth, if a video segment does not contain important content, the enhancement layers will be dropped to keep the forward-shifting of the enhancement layer unchanged. If the enhancement layer does contain important content, it will be transmitted later when bandwidth increases.
摘要:
Various embodiments provide methods and systems for streaming data that can facilitate streaming during bandwidth fluctuations in a manner that can enhance the user experience. In one aspect, a forward-shifting technique is utilized to buffer data that is to be streamed, e.g. an enhancement layer in a FGS stream. Various techniques can drop layers actively when bandwidth is constant. The saved bandwidth can then be used to pre-stream enhancement layer portions. In another aspect, a content-aware decision can be made as to how to drop enhancement layers when bandwidth decreases. During periods of decreasing bandwidth, if a video segment does not contain important content, the enhancement layers will be dropped to keep the forward-shifting of the enhancement layer unchanged. If the enhancement layer does contain important content, it will be transmitted later when bandwidth increases.
摘要:
Various embodiments provide methods and systems for streaming data that can facilitate streaming during bandwidth fluctuations in a manner that can enhance the user experience. In one aspect, a forward-shifting technique is utilized to buffer data that is to be streamed, e.g. an enhancement layer in a FGS stream. Various techniques can drop layers actively when bandwidth is constant. The saved bandwidth can then be used to pre-stream enhancement layer portions. In another aspect, a content-aware decision can be made as to how to drop enhancement layers when bandwidth decreases. During periods of decreasing bandwidth, if a video segment does not contain important content, the enhancement layers will be dropped to keep the forward-shifting of the enhancement layer unchanged. If the enhancement layer does contain important content, it will be transmitted later when bandwidth increases.