Abstract:
This provides a system and method for constructing and employing a wire carrier for use in reinforcing the attachment channel of weather seals that includes an expansion and compression resisting element located along at least one bending axis of the carrier when it is folded and molded into the attachment channel of the weather seal. The resisting element can be combined with warp yarns that allow limited expansion and compression along other axes, but in combination with the element prevent collapse of the seal that results in and uneven surface and/or visible kinks. The resisting element can comprise at least one undulating (sinusoidal) wire that is attached (e.g. by welding, soldering, etc.) to the individual crossing carrier wires. Alternatively, the resisting element can comprise another type of structure, such as a thin metal or polymer strip. Likewise, the undulating wire(s) can be constructed from a polymer.
Abstract:
This invention provides a knitted wire carrier for use in constructing a (e.g.) automotive weather seal that incorporates a locking stitch formed from a relatively incompressible and expansion-resisting material that passes through at least one of the warp threads adjacent to the wire weft. In an embodiment, the locking stitch constructed from a steel (or another metal) wire that is solid or braided. In other embodiments, the locking stitch can be constructed from fiberglass, monofilament polymer or another similarly performing material. In an embodiment, the lockstitch wire is constructed from approximately 0.5-millimeter diameter steel and the wire carrier is constructed from approximately 0.5-0.91-millimeter diameter steel. The wire lockstitch can be woven through a center warp yarn that is surrounded by other knitted warp yarns along the overall weft of the wire carrier. The wire carrier is coated with an adhesive, e.g., latex to maintain the knit in place.
Abstract:
This invention provides a knitted wire carrier for use in constructing a (e.g.) automotive weather seal that incorporates a locking stitch formed from a relatively incompressible and expansion-resisting material that passes through at least one of the warp threads adjacent to the wire weft. In an embodiment, the locking stitch constructed from a steel (or another metal) wire that is solid or braided. In other embodiments, the locking stitch can be constructed from fiberglass, monofilament polymer or another similarly performing material. In an embodiment, the lockstitch wire is constructed from approximately 0.5-millimeter diameter steel and the wire carrier is constructed from approximately 0.5-0.91-millimeter diameter steel. The wire lockstitch can be woven through a center warp yarn that is surrounded by other knitted warp yarns along the overall weft of the wire carrier. The wire carrier is coated with an adhesive, e.g., latex to maintain the knit in place.
Abstract:
This invention provides a knitted wire carrier for use in constructing a (e.g.) automotive weather seal that incorporates a locking stitch formed from a relatively incompressible and expansion-resisting material that passes through at least one of the warp threads adjacent to the wire weft. In an embodiment, the locking stitch constructed from a steel (or another metal) wire that is solid or braided. In other embodiments, the locking stitch can be constructed from fiberglass, monofilament polymer or another similarly performing material. In an embodiment, the lockstitch wire is constructed from approximately 0.5-millimeter diameter steel and the wire carrier is constructed from approximately 0.5-0.91-millimeter diameter steel. The wire lockstitch can be woven through a center warp yarn that is surrounded by other knitted warp yarns along the overall weft of the wire carrier. The wire carrier is coated with an adhesive, e.g., latex to maintain the knit in place.
Abstract:
This provides a system and method for constructing and employing a wire carrier for use in reinforcing the attachment channel of weather seals that includes an expansion and compression resisting element located along at least one bending axis of the carrier when it is folded and molded into the attachment channel of the weather seal. The resisting element can be combined with warp yarns that allow limited expansion and compression along other axes, but in combination with the element prevent collapse of the seal that results in and uneven surface and/or visible kinks. The resisting element can comprise at least one undulating (sinusoidal) wire that is attached (e.g. by welding, soldering, etc.) to the individual crossing carrier wires. Alternatively, the resisting element can comprise another type of structure, such as a thin metal or polymer strip. Likewise, the undulating wire(s) can be constructed from a polymer.
Abstract:
This invention provides a knitted wire carrier for use in constructing a (e.g.) automotive weather seal that incorporates a locking stitch formed from a relatively incompressible and expansion-resisting material that passes through at least one of the warp threads adjacent to the wire weft. In an embodiment, the locking stitch constructed from a steel (or another metal) wire that is solid or braided. In other embodiments, the locking stitch can be constructed from fiberglass, monofilament polymer or another similarly performing material. In an embodiment, the lockstitch wire is constructed from approximately 0.5-millimeter diameter steel and the wire carrier is constructed from approximately 0.5-0.91-millimeter diameter steel. The wire lockstitch can be woven through a center warp yarn that is surrounded by other knitted warp yarns along the overall weft of the wire carrier. The wire carrier is coated with an adhesive, e.g., latex to maintain the knit in place.