Abstract:
Embodiments of this application provide a dielectric filter and a communication device. The dielectric filter includes: a dielectric body, a first blind via and a second blind via that are provided in the dielectric body, a through hole located between the first blind via and the second blind via, and an insulating portion, where inner walls of the first blind via, the second blind via, and the through hole each are covered with a metal layer, and an outer surface of the dielectric body is covered with a metal layer; and the insulating portion is implemented by not covering a metal layer on a surface of the dielectric body, and the insulating portion partially surrounds the through hole.
Abstract:
Embodiments of this application disclose a dielectric filter and a communication device. In one example, the dielectric filter includes: a first dielectric block and a second dielectric block that are stacked up, where a first surface of the first dielectric block is opposite to a second surface of the second dielectric block; a first blind hole, a first through hole, and two or more resonance through holes whose openings are located on the first surface of the first dielectric block, and a second through hole whose opening is located on the second surface of the second dielectric block. A metal layer on the first surface of the first dielectric block is connected to a metal layer on the second surface of the second dielectric block.
Abstract:
This application relates to components of communications devices, and in particular, to a dielectric resonator and a dielectric filter, a transceiver, and a base station to which the dielectric resonator is applied. Embodiments of this application provide a dielectric resonator and a dielectric filter, a transceiver, and a base station to which the dielectric resonator is applied. The dielectric resonator includes a metal cavity and a dielectric block that is disposed in the metal cavity and that is made from a solid-state dielectric material; where sizes of the dielectric block meet c
Abstract:
Embodiments of the present invention disclose a filter apparatus, a base station system, and a method for frequency channel switching. In application of technical solutions provided by the embodiments of the present invention, the grounding probe connected to the electrical ground contacts or approaches the resonator to short-circuit or disturb a resonant cavity that includes the resonator, so as to reject output of an input signal of the filter apparatus and finally achieve an effect of closing the filter apparatus; when the filter apparatus is used in combination with multiple other filter apparatuses, and when the filter apparatus is closed, spurious signals of the other filter apparatuses are not propagated to an antenna port through the filter apparatus.
Abstract:
This application provides a dielectric resonator, including a dielectric body disposed in a hollow conductive housing, where the dielectric body includes a first end face and a second end face that are disposed opposite to each other and a circumferential surface connected between the first end face and the second end face. The first end face is provided with a first groove, the second end face is provided with a second groove, the first end face and the second end face are in contact with an inner wall of the conductive housing, and extension directions of the first groove and the second groove are different. This application further provides a filter. This application can implement single-sided installation of the dielectric resonator, so that an objective of miniaturization is achieved and assembly becomes easy. In addition, coupling between resonance modes can be enhanced because the extension directions of the first groove and the second groove are different.