Abstract:
An apparatus and a method for detecting an uplink optical signal. The apparatus includes a memory and a processor, where the processor is configured to determine a remaining bandwidth in a target uplink frame as a test window, where the remaining bandwidth in the target uplink frame indicates an unallocated bandwidth in the target uplink frame, and detect an uplink optical signal in the determined test window. Therefore, a remaining bandwidth obtained after bandwidth allocation in a target uplink frame is used to detect an uplink optical signal, which can effectively use a resource without the need of independently opening a test window and using an extra resource to detect the uplink optical signal, thereby avoiding waste of a resource and improving test efficiency.
Abstract:
An apparatus and a method for detecting an uplink optical signal. The apparatus includes a memory and a processor, where the processor is configured to determine a remaining bandwidth in a target uplink frame as a test window, where the remaining bandwidth in the target uplink frame indicates an unallocated bandwidth in the target uplink frame, and detect an uplink optical signal in the determined test window. Therefore, a remaining bandwidth obtained after bandwidth allocation in a target uplink frame is used to detect an uplink optical signal, which can effectively use a resource without the need of independently opening a test window and using an extra resource to detect the uplink optical signal, thereby avoiding waste of a resource and improving test efficiency.
Abstract:
Embodiments disclose a method and an apparatus for detecting power of an uplink optical signal, an optical line terminal, and an optical network system. The method includes: separately generating a triggering signal that is used for detecting optical power for each uplink optical signal among multiple uplink optical signals to be detected, where the triggering signal of each uplink optical signal has same duration. The method also includes separately detecting power of each uplink optical signal in the duration of the triggering signal of each uplink optical signal.
Abstract:
Embodiments of the present invention provide an optical network unit ONU registration method, apparatus, and system, to resolve a problem in the prior art that a registration process is cumbersome. The method includes: receiving an uplink optical signal, where the uplink optical signal carries ONU authentication information; sending the optical signal to a corresponding MAC module separately according to a wavelength of uplink light; extracting, by the MAC module, the ONU authentication information, and sending the extracted ONU authentication information to a processor; and receiving, by the processor, the ONU authentication information, and determining whether the ONU authentication information is consistent with ONU authentication information configured by an OLT, where if the ONU authentication information is consistent with the ONU authentication information configured by the OLT, an ONU is registered successfully.
Abstract:
Embodiments disclose a method and an apparatus for detecting power of an uplink optical signal, an optical line terminal, and an optical network system. The method includes: separately generating a triggering signal that is used for detecting optical power for each uplink optical signal among multiple uplink optical signals to be detected, where the triggering signal of each uplink optical signal has same duration. The method also includes separately detecting power of each uplink optical signal in the duration of the triggering signal of each uplink optical signal.
Abstract:
The present invention discloses a method, an apparatus, an optical component and an optical network system for controlling an operating temperature of an optical component. The method includes: acquiring an external ambient temperature of the optical component; setting a target control temperature of a temperature controller according to the external ambient temperature, where the target control temperature is a function value of the external ambient temperature, and the target control temperature is within a range from an operating temperature lower limit of a laser to an operating temperature upper limit of the laser; and controlling, according to the target control temperature, an operating temperature of the optical component by means of heating or cooling by using the temperature controller.
Abstract:
The present invention discloses a method, an apparatus, an optical component and an optical network system for controlling an operating temperature of an optical component. The method includes: acquiring an external ambient temperature of the optical component; setting a target control temperature of a temperature controller according to the external ambient temperature, where the target control temperature is a function value of the external ambient temperature, and the target control temperature is within a range from an operating temperature lower limit of a laser to an operating temperature upper limit of the laser; and controlling, according to the target control temperature, an operating temperature of the optical component by means of heating or cooling by using the temperature controller.