摘要:
This application discloses an optical switch and an optical switching system. Both a first waveguide and a second waveguide of the optical switch are immovable relative to a substrate and are located in a first plane. A first deformable waveguide is also located in the first plane. A first section of the first deformable waveguide is fixed relative to the substrate, and a second section other than the first section can deform under control of a first actuator. When the first deformable waveguide is in a first state, the first deformable waveguide is optically decoupled from the first waveguide and the second waveguide, and the optical switch is in a through state. When the first deformable waveguide is in a second state, the first deformable waveguide is optically coupled to the first waveguide and the second waveguide, and the optical switch is in a drop state.
摘要:
A polarization mode converter includes a rectangular waveguide, a first tapered waveguide, and a second tapered waveguide. A height of the rectangular waveguide is a first height (H1). A side of the first tapered waveguide is coupled to the rectangular waveguide. A width of the first tapered waveguide changes gradually. A height of the first tapered waveguide is a second height (H2), and H2 is less than H1. The second tapered waveguide is detached from the rectangular waveguide and the first tapered waveguide. A width of the second tapered waveguide changes gradually. A height of the second tapered waveguide is H1. The first tapered waveguide is located between the rectangular waveguide and the second tapered waveguide.
摘要:
An optical interconnector (915) includes: a first vertical coupled cavity (100), a first optical waveguide (102), and a second optical waveguide (103). The first vertical coupled cavity (100) includes N identical micro-resonant cavities that are equidistantly stacked, where a center of each micro-resonant cavity is located on a first straight line that is perpendicular to a plane on which the micro-resonant cavity is located, the first optical waveguide (102) and a first micro-resonant cavity (11) are in a same plane, the second optical waveguide (103) and a second micro-resonant cavity (13) are in a same plane, the first optical waveguide (102) is an input optical waveguide, the second optical waveguide (103) is a first output optical waveguide, and an optical signal having a first resonant wavelength in the first optical waveguide (102) enters the second optical waveguide (103) through the first vertical coupled cavity (100).
摘要:
A resonant cavity component can be used in an optical switching system, and includes a resonant cavity group, where the resonant cavity group includes at least two resonant cavities that have displacement in a vertical direction, and adjacent resonant cavities exchange optical energy by means of evanescent wave coupling; a restriction layer between resonant cavities that has a relatively low refractive index; and at least one optical waveguide, close to a bottom-layer resonant cavity in the resonant cavity group, couples optical energy, and is used to input or output an optical signal. In implementation manners of the present invention, multiple resonant cavities have displacement in a vertical direction, are located in different planes, and may be made by using a CMOS process; and a space in a vertical direction can be controlled to a level of several nanometers.
摘要:
A mode converter provided in the present invention includes an input multimode waveguide, an output multimode waveguide, and a first conversion waveguide, where the input multimode waveguide is configured to receive a first signal which mode is a first mode; the first conversion waveguide has an input coupling waveguide with a first effective refractive index, and has an output coupling waveguide with a second effective refractive index; the first conversion waveguide is configured to perform, by using the input coupling waveguide, evanescent wave coupling on the first signal that is in the first mode and that is transmitted in the input multimode waveguide, and couple the first signal to the second mode of the output multimode waveguide by using the output coupling waveguide, so as to obtain the first signal in the second mode; and the output multimode waveguide is configured to output the first signal in the second mode.
摘要:
A grating coupler and a preparation method thereof are provided. The grating coupler includes a substrate layer, a lower confining layer, a waveguide core layer, and an upper confining layer that are sequentially arranged. The waveguide core layer includes a submicron waveguide, a first tapered waveguide, and a waveguide array. The waveguide array includes at least two waveguide groups, the waveguide group includes at least one waveguide chain, the waveguide chain includes at least two waveguides that have different widths, and the waveguides in the waveguide chain are connected to each other. An end of the waveguide chain in the waveguide array is connected to a wide end of the first tapered waveguide, and a narrow end of the first tapered waveguide is connected to the submicron waveguide.
摘要:
An optical interconnector (915) includes: a first vertical coupled cavity (100), a first optical waveguide (102), and a second optical waveguide (103). The first vertical coupled cavity (100) includes N identical micro-resonant cavities that are equidistantly stacked, where a center of each micro-resonant cavity is located on a first straight line that is perpendicular to a plane on which the micro-resonant cavity is located, the first optical waveguide (102) and a first micro-resonant cavity (11) are in a same plane, the second optical waveguide (103) and a second micro-resonant cavity (13) are in a same plane, the first optical waveguide (102) is an input optical waveguide, the second optical waveguide (103) is a first output optical waveguide, and an optical signal having a first resonant wavelength in the first optical waveguide (102) enters the second optical waveguide (103) through the first vertical coupled cavity (100).
摘要:
A cross waveguide includes a first waveguide and a second waveguide, where the first waveguide and the second waveguide are mutually perpendicular and crosswise disposed, an area formed by a cross part of the first waveguide and the second waveguide is a cross area, the first waveguide and the second waveguide each include a shallow etching part and a core layer, and the shallow etching part is symmetrically distributed on two sides of the core layer in a length direction relative to an axis of the core layer. By appropriately adjusting a width of the core layer or a width of the shallow etching part, an energy loss generated during optical wave transmission in the cross waveguide can be effectively reduced.
摘要:
Examples of a polarization independent optical device are described. One example polarization independent optical device includes an input/output preprocessing optical path and M add/drop optical paths. Any add/drop optical path can be configured to drop a first QTE and a first PTE that meet a resonance condition of a microring included in the add/drop optical path such that each add/drop optical path can be configured to drop a desired optical signal. Any add/drop optical path can also be configured to transmit an input optical signal to the input/output preprocessing optical path. Therefore, when any of the M add/drop optical paths is configured to drop a desired optical signal, another add/drop optical path can be configured to add a desired optical signal.
摘要:
The present application discloses an optical switch, including a first optical waveguide, a second optical waveguide, and a first heater, where a place at which a distance between the first optical waveguide and the second optical waveguide is the smallest is a junction; the first heater is adjacent to the third optical sub-waveguide; and there is a first dielectric material between the first heater and the third optical sub-waveguide, and there is a second dielectric material between the third optical sub-waveguide and the fourth optical sub-waveguide, where a thermal conductivity of the first dielectric material is greater than a thermal conductivity of the second dielectric material. The optical switch has advantages such as high heating efficiency, a small quantity of heaters, and simple control.