Abstract:
A system and method for sound source separation. The system and method use a beamforming technique. The sound source separation system includes a windowing processor; a DFT transformer; a transfer function estimator; and a noise estimator. The system also includes a voice signal extractor that cancels individual voice signals, except an individual voice signal that is desired to be extracted among individual voice signals, from the integrated voice signals. The system further includes a voice signal detector that cancels a noise part provided through the noise estimator from a transfer function of an individual voice signal which is desired to be detected and extracts a noise-canceled individual voice signal. Even when two or more sound sources are simultaneously input, the sound sources can be separated from each other and separately stored and managed, or an initial sound source can be stored and managed.
Abstract:
An adaptive mode control apparatus and method for adaptive beamforming based on detection of a user direction sound are provided. The adaptive mode control apparatus includes a signal intensity detector that searches for signal intensity of each designated direction to detect signal intensity having a maximum value when a voice signal of each direction is input through at least one microphone; and an adaptive mode controller that compares the signal intensity having the maximum value detected through the signal intensity detector with a threshold value and determines whether to perform an adaptive mode of a Generalized Sidelobe Canceller (GSC) according to the comparison results. Therefore, a lack of control of adaptation of an adaptive filter of the conventional art is solved. That is, as one condition for guaranteeing performance of adaptive beamforming, adaptation of an adaptive filter is not performed when noise of a sound with a high autocorrelation is cancelled.
Abstract:
A system and method for sound source separation. The system and method use a beamforming technique. The sound source separation system includes a windowing processor; a DFT transformer; a transfer function estimator; and a noise estimator. The system also includes a voice signal extractor that cancels individual voice signals, except an individual voice signal that is desired to be extracted among individual voice signals, from the integrated voice signals. The system further includes a voice signal detector that cancels a noise part provided through the noise estimator from a transfer function of an individual voice signal which is desired to be detected and extracts a noise-canceled individual voice signal. Even when two or more sound sources are simultaneously input, the sound sources can be separated from each other and separately stored and managed, or an initial sound source can be stored and managed.
Abstract:
Disclosed are an apparatus and a method for beamforming in consideration of characteristics of an actual noise environment. The apparatus includes a microphone array having at least microphone, the microphone array outputting a signal input through the microphone; a coherence function generation unit for calculating coherences for input signals according to each space between microphones, calculating averages of the coherences for the same distance, and filtering the calculated averages of the coherences and outputting the resultant values, when an input signal is input; a spatial filter factor calculation unit for calculating and outputting a spatial filter factor by using the filtered average coherences; and a beamforming execution unit for performing a beamforming for the input signals by using the spatial filter factor, thereby outputting a noise-processed signal.
Abstract:
Disclosed are an apparatus and a method for beamforming in consideration of characteristics of an actual noise environment. The apparatus includes a microphone array having at least microphone, the microphone array outputting a signal input through the microphone; a coherence function generation unit for calculating coherences for input signals according to each space between microphones, calculating averages of the coherences for the same distance, and filtering the calculated averages of the coherences and outputting the resultant values, when an input signal is input; a spatial filter factor calculation unit for calculating and outputting a spatial filter factor by using the filtered average coherences; and a beamforming execution unit for performing a beamforming for the input signals by using the spatial filter factor, thereby outputting a noise-processed signal.
Abstract:
Disclosed is a method and an apparatus for estimating noise included in a sound signal during sound signal processing. The method includes estimating harmonics components in a frame of an input sound signal; using the estimated harmonics components, computing a Voice Presence Probability (VPP) on the frame of the input sound signal; determining a weight of an equation necessary to estimate a noise spectrum, depending on the computed VPP; and using the determined weight and the equation necessary to estimate a noise spectrum, estimating the noise spectrum, and updating the noise spectrum.
Abstract:
Disclosed is a method and an apparatus for estimating noise included in a sound signal during sound signal processing. The method includes estimating harmonics components in a frame of an input sound signal; using the estimated harmonics components, computing a Voice Presence Probability (VPP) on the frame of the input sound signal; determining a weight of an equation necessary to estimate a noise spectrum, depending on the computed VPP; and using the determined weight and the equation necessary to estimate a noise spectrum, estimating the noise spectrum, and updating the noise spectrum.
Abstract:
A method and a system for segmenting phonemes from voice signals. A method for accurately segmenting phonemes, in which a histogram showing a peak distribution corresponding to an order is formed by using a high order concept, and a boundary indicating a starting point and an ending point of each phoneme is determined by calculating a peak statistic based on the histogram. The phoneme segmentation method can remarkably reduce an amount of calculation, and has an advantage of being applied to sound signal systems which perform sound coding, sound recognition, sound synthesizing, sound reinforcement, etc.
Abstract:
A method is provided for creating a panorama. The method includes photographing a plurality of images having same backgrounds and different forms of a subject, determining a size and a position of a reference region for creating a panorama using the images, extracting a target region within the reference region from each of the images, detecting same portions in adjacent target regions, and creating a panorama by combining the adjacent target regions on the basis of the same portions.
Abstract:
A face recognition system based on adaptive learning includes a specific person detection and tracking unit for detecting and tracking a specific person from a moving image. A facial feature extraction unit extracts a plurality of facial feature vectors from the detected and tracked specific person. A face recognition unit searches for a given registration model by comparing the extracted facial feature vectors with facial feature vectors of the registration models previously stored in a user registration model database. A learning target selection unit selects a facial feature vector to be added to a record of the given registration model from among the extracted facial feature vectors. A registration model learning unit adds and updates the selected facial feature vector to the record of the given registration model.