摘要:
A sulfide-based solid electrolyte contains a nickel (Ni) element and a halogen element. For example, a sulfide-based solid electrolyte can include, with respect to 100 parts by mole of a mixture of lithium sulfide (Li2S) and diphosphorus pentasulfide (P2S5), 5 parts by mole to 20 parts by mole of nickel sulfide (Ni3S2), and 5 parts by mole to 40 parts by mole of lithium halide.
摘要:
Disclosed is a method of manufacturing an all-solid battery by a wet-dry mixing process, such that a binder can be uniformly dispersed in a solid electrolyte layer. As such, the size of the battery can be increased and and a thickness of the battery can be reduced.
摘要:
Disclosed are a sulfur-carbon composite and a method of preparing the sulfur-carbon composite by dual dry complexation. The sulfur-carbon composite has a structure that fibrous carbon is introduced to an interior of sulfur and carbon is coated to an exterior of the sulfur.
摘要:
A sulfide-based solid electrolyte contains a nickel (Ni) element and a halogen element. For example, a sulfide-based solid electrolyte can include, with respect to 100 parts by mole of a mixture of lithium sulfide (Li2S) and diphosphorus pentasulfide (P2S5), 5 parts by mole to 20 parts by mole of nickel sulfide (Ni3S2), and 5 parts by mole to 40 parts by mole of lithium halide.
摘要:
A method of preparing a solid electrolyte includes preparing a mixed powder with a sulfur powder, a phosphorus powder and a lithium powder. The sulfur in the sulfur powder, the phosphorus in the phosphorus powder, and the lithium in the lithium powder are each in an elemental form. The mixed powder is milled to obtain an amorphous powder. The method includes heat-treating the amorphous powder to form a crystallized solid electrolyte.
摘要:
A method of preparing a solid electrolyte includes preparing a mixed powder with a sulfur powder, a phosphorus powder and a lithium powder. The sulfur in the sulfur powder, the phosphorus in the phosphorus powder, and the lithium in the lithium powder are each in an elemental form. The mixed powder is milled to obtain an amorphous powder. The method includes heat-treating the amorphous powder to form a crystallized solid electrolyte.
摘要:
The present disclosure relates to garnet powder, a manufacturing method thereof, a solid electrolyte sheet using a hot press, and a manufacturing method thereof. In particular, the present disclosure provides a method for manufacturing Li7La3Zr2O12 (LLZ) garnet powder including preparing a mixture by first dry mixing Li2CO3, La2O3, ZrO2, and Al2O3. The mixture is first calcinated for 5 to 7 hours in a temperature range of 800 to 1000° C. The calcinated mixture is ground to a powder with an average particle size of 1 to 4 μm through dry grinding. A cubic-phased LLZ garnet powder is prepared by second calcinating the ground mixture for 10 to 30 hours in a temperature range of 1100 to 1300° C.
摘要:
A method of manufacturing a sulfide-based solid electrolyte through a wet process is provided. The method includes preparing a slurry by adding a solvent to a mixture including lithium sulfide and a sulfide of a group 14 or group 15 element and amorphizing the mixture by milling the slurry. The slurry is dried in order to remove the solvent. The dried mixture is crystallized by heat-treating to form the sulfide-based solid electrolyte.
摘要:
A sulfide-based crystallized glass for an all-solid secondary battery has a sulfide that includes Li2S and P2S5, wherein the sulfide-based crystallized glass consists of 1 to 5% by mole of Li3BO3. A method for manufacturing the sulfide-based crystallized glass comprises steps of mixing (1) 75 to 80% by mole of Li2S and 20 to 25% by mole of P2S5, and then mixing (2) 95 to 99% by mole of obtained mixture at (1) and 1 to 5% by mole of Li3BO3 with a mechanical milling method, and subjecting the mixture thus obtained to a heat-treatment process.
摘要:
Disclosed are a method for manufacturing a lithium ion conductive sulfide compound, a lithium ion conductive sulfide compound manufactured by the same, and a solid electrolyte and an all solid battery comprising the same. Particularly, the lithium ion conductive sulfide compound that is manufactured by milling at low temperature so as to increase brittleness of raw materials has differentiated particle distribution, crystal structure and mixing property from the conventional one.