Abstract:
The present invention provides an optical fiber connector adapted for connecting an optical fiber carried in the optical fiber connector to an optical cable, which comprises a plug, a ferrule assembly mounted in the plug, a retention member engaged with the plug, and having a first end and a second end, a resilient element mounted between the ferrule assembly and the retention member, a crimp member having a third end and a fourth end engaging with the second end, an extension member connecting thereto the optical cable, attached to the crimp member at the crimp member at the third end and having an entrance end, and an adjuster mounted between the second end and the fourth end for adjusting an engaging extent therebetween. Such an optical fiber connector not only prevents a clearance between two coupled ferrules of two connectors from interrupting optical signals transmitted therethrough but also guards against an inadvertent detachment of the connector from the coupling housing when the connectors are coupled on the coupling housing. Besides, the pre-assemblage of the first and the second units are compatible among different types of the present connectors.
Abstract:
A temperature-compensating device with tunable mechanism for optical fiber gratings includes a moving pin, a tube housing, a rotation sleeve, a plug and a locking screw. The moving pin has a first predetermined outer screw pitch at one end and an elongated slot at the other end for receiving the locking screw. The tube housing has a second predetermined outer screw pitch at one end and an inner screw pitch at the other end. The rotation sleeve has a first predetermined inner thread corresponding to the first predetermined outer screw pitch of the moving pin, and a second predetermined inner thread corresponding to the second predetermined outer screw pitch of the tube housing. The plug is inserted into the end of the tube housing with outer thread engaged with the inner screw pitch of the tube housing. The grating fiber is placed inside the moving pin. The slot of the moving pin is guided by the locking screw which enables the linear movement of the moving pin. When the locking screw is in position, the moving pin cannot self-rotate, so rotating the sleeve in one cycle will make the moving pin have a movement of the second predetermined outer screw pitch minus the first predetermined outer screw pitch. Once the locking screw is rotated outwardly not to guide the slot, rotating the rotation sleeve 360 degrees will result in the second predetermined outer screw pitch movement of the moving pin, which called “quick movement”.
Abstract:
An adjustable attenuation adapter mainly comprises a fixing body having a bore centrally disposed therethrough and a connecting member extending outwardly from the bore; a moving body having a cylindrical body with a threaded outer surface; an inner roller being disposed within the central bore of the fixing body, the inner roller having an outer surface with gear teeth and an inner threaded surface for driving the threaded outer surface of the cylindrical body of the moving body; and an adjusting knob disposed within the fixing body and adjacent to the inner roller, the adjusting knob having a gear body for driving gear teeth of the inner roller. Since the threaded outer surface of the cylindrical body is threadedly driven by the inner threaded surface of the inner roller which is also gearedly rotated by the adjusting knob, the rotation of the adjusting knob causes the axial displacement of the moving body with respect to the fixing body.
Abstract:
A bimetal-based temperature stabilized multi-FBG package with tunable mechanism mainly includes a moving pin, a bimetal fixture, a rotation sleeve, a locking pin. The moving pin has a first predetermined outer screw pitch at one end and an elongated slot at the other end for receiving the locking pin. The bimetal fixture has a main frame and a plate secured to the main frame. The main frame of the bimetal fixture has a tube member extending outwardly from the side wall thereof, and the tube member has a second predetermined outer screw pitch at the distal end thereof. The rotation sleeve has a first predetermined inner thread corresponding to the first predetermined outer screw pitch of the moving pin and a second predetermined inner thread corresponding to the second predetermined outer screw pitch of the bimetal fixture. The grating fiber is first placed inside the moving pin and then the fiber is metallized or soldered to the moving pin and the holding arm of the bimetal fixture. The slot of the moving pin is guided by the locking pin which enables the linear movement of the moving pin. When the locking pin is in position, the moving pin cannot self-rotate, so rotating the sleeve in one cycle will make the moving pin has a movement of the second predetermined outer screw pitch minus the first predetermined outer screw pitch. Once the locking pin is rotated outwardly not to guide the slot, rotating the rotation sleeve 30 in 360 degrees will result in the second predetermined outer screw pitch (0.4 mm) movement of the moving pin, which called “quick movement”.