Abstract:
A wiring substrate includes a core substrate, a build-up part formed on a surface of the substrate and including insulating layers and conductor layers, and a covering insulating layer formed on the build-up part such that the covering layer is covering the outermost surface of the build-up part. The build-up part is formed such that the insulating layers include a first insulating layer forming the outermost one of the insulating layers, that the conductor layers include a first conductor layer formed on the first insulating layer and including a first conductor pad, and that an elongation rate of the first insulating layer is greater than an elongation rate of each insulating layer other than the first insulating layer in the build-up part, and the covering layer is formed such that the covering layer has an opening entirely exposing an upper surface and a side surface of the first conductor pad.
Abstract:
A thermal receiver includes a heat absorption body and a support body. The heat absorption body is made of at least one honeycomb unit having a plurality of flow paths arranged for circulation of a heat medium. The support body supports the heat absorption body and allows circulation of the heat medium. The heat absorption body includes silicon carbide and is supported at a position away from an inner surface of the support body by a predetermined distance.
Abstract:
A thermal receiver includes a heat absorption body and a support body. The heat absorption body includes at least one honeycomb unit having a plurality of flow paths arranged for circulation of a heat medium. The heat absorption body includes silicon carbide. A surface of the at least one honeycomb unit to which solar light is radiated is subjected to a roughening treatment or a coating treatment. The support body accommodates and supports the heat absorption body and allows circulation of the heat medium.
Abstract:
A heat collection receiver includes a heat absorption body and a support body. The heat absorption body includes at least one honeycomb unit in which a plurality of flow paths through which a heat medium passes are provided in parallel with each other. The at least one honeycomb unit includes porous silicon carbide and silicon that fills pores in the porous silicon carbide. A surface region of the at least one honeycomb unit includes a porous layer which includes pores in a predetermined depth from the surface. The surface region is irradiated with solar light. The pores of the porous layer are not filled with the silicon. The support body accommodates and supports the heat absorption body and the heat medium flows through the support body.
Abstract:
A thermal collector tube includes a main body portion that houses a heat medium, and a coating layer provided on an outside surface of the main body portion. The coating layer has a radiation rate of 0.70 to 0.98 at room temperature and at a wavelength of 1 μm to 15 μm. The thermal collector tube is used in concentrated solar power generation in which solar light is collected using reflecting mirrors, the collected solar light is converted into heat using a thermal collector having the thermal collector tube, and power is generated using the heat.
Abstract:
A wiring substrate includes a core substrate, a build-up part formed on a surface of the substrate and including insulating layers and conductor layers, and a covering insulating layer formed on the build-up part such that the covering layer is covering the outermost surface of the build-up part. The build-up part is formed such that the insulating layers include a first insulating layer forming the outermost one of the insulating layers, that the conductor layers include a first conductor layer formed on the first insulating layer and including a first conductor pad, and that a tensile strength of the first insulating layer is higher than a tensile strength of each insulating layer other than the first insulating layer in the first build-up part, and the covering layer is formed such that the covering layer has opening entirely exposing an upper surface and a side surface of the first conductor pad.